Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Gülşen Eryiğit
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2017) 43 (4): 837–892.
Published: 01 December 2017
FIGURES
| View All (6)
Abstract
View articletitled, Multiword Expression Processing: A Survey
View
PDF
for article titled, Multiword Expression Processing: A Survey
Multiword expressions (MWEs) are a class of linguistic forms spanning conventional word boundaries that are both idiosyncratic and pervasive across different languages. The structure of linguistic processing that depends on the clear distinction between words and phrases has to be re-thought to accommodate MWEs. The issue of MWE handling is crucial for NLP applications, where it raises a number of challenges. The emergence of solutions in the absence of guiding principles motivates this survey, whose aim is not only to provide a focused review of MWE processing, but also to clarify the nature of interactions between MWE processing and downstream applications. We propose a conceptual framework within which challenges and research contributions can be positioned. It offers a shared understanding of what is meant by “MWE processing,” distinguishing the subtasks of MWE discovery and identification. It also elucidates the interactions between MWE processing and two use cases: Parsing and machine translation. Many of the approaches in the literature can be differentiated according to how MWE processing is timed with respect to underlying use cases. We discuss how such orchestration choices affect the scope of MWE-aware systems. For each of the two MWE processing subtasks and for each of the two use cases, we conclude on open issues and research perspectives.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2008) 34 (4): 627.
Published: 01 December 2008
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2008) 34 (3): 357–389.
Published: 01 September 2008
Abstract
View articletitled, Dependency Parsing of Turkish
View
PDF
for article titled, Dependency Parsing of Turkish
The suitability of different parsing methods for different languages is an important topic in syntactic parsing. Especially lesser-studied languages, typologically different from the languages for which methods have originally been developed, pose interesting challenges in this respect. This article presents an investigation of data-driven dependency parsing of Turkish, an agglutinative, free constituent order language that can be seen as the representative of a wider class of languages of similar type. Our investigations show that morphological structure plays an essential role in finding syntactic relations in such a language. In particular, we show that employing sublexical units called inflectional groups , rather than word forms, as the basic parsing units improves parsing accuracy. We test our claim on two different parsing methods, one based on a probabilistic model with beam search and the other based on discriminative classifiers and a deterministic parsing strategy, and show that the usefulness of sublexical units holds regardless of the parsing method. We examine the impact of morphological and lexical information in detail and show that, properly used, this kind of information can improve parsing accuracy substantially. Applying the techniques presented in this article, we achieve the highest reported accuracy for parsing the Turkish Treebank.