Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Haibo Zhang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2022) 48 (4): 887–906.
Published: 01 December 2022
FIGURES
| View All (5)
Abstract
View article
PDF
Query language identification (Q-LID) plays a crucial role in a cross-lingual search engine. There exist two main challenges in Q-LID: (1) insufficient contextual information in queries for disambiguation; and (2) the lack of query-style training examples for low-resource languages. In this article, we propose a neural Q-LID model by alleviating the above problems from both model architecture and data augmentation perspectives. Concretely, we build our model upon the advanced Transformer model. In order to enhance the discrimination of queries, a variety of external features (e.g., character, word, as well as script) are fed into the model and fused by a multi-scale attention mechanism. Moreover, to remedy the low resource challenge in this task, a novel machine translation–based strategy is proposed to automatically generate synthetic query-style data for low-resource languages. We contribute the first Q-LID test set called QID-21 , which consists of search queries in 21 languages. Experimental results reveal that our model yields better classification accuracy than strong baselines and existing LID systems on both query and traditional LID tasks. 1
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2022) 48 (2): 321–342.
Published: 09 June 2022
FIGURES
| View All (7)
Abstract
View article
PDF
Short texts (STs) present in a variety of scenarios, including query, dialog, and entity names. Most of the exciting studies in neural machine translation (NMT) are focused on tackling open problems concerning long sentences rather than short ones. The intuition behind is that, with respect to human learning and processing, short sequences are generally regarded as easy examples. In this article, we first dispel this speculation via conducting preliminary experiments, showing that the conventional state-of-the-art NMT approach, namely, T ransformer (Vaswani et al. 2017), still suffers from over-translation and mistranslation errors over STs. After empirically investigating the rationale behind this, we summarize two challenges in NMT for STs associated with translation error types above, respectively: (1) the imbalanced length distribution in training set intensifies model inference calibration over STs, leading to more over-translation cases on STs; and (2) the lack of contextual information forces NMT to have higher data uncertainty on short sentences, and thus NMT model is troubled by considerable mistranslation errors. Some existing approaches, like balancing data distribution for training (e.g., data upsampling) and complementing contextual information (e.g., introducing translation memory) can alleviate the translation issues in NMT for STs. We encourage researchers to investigate other challenges in NMT for STs, thus reducing ST translation errors and enhancing translation quality.