Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Hal Daumé
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2021) 47 (3): 615–661.
Published: 03 November 2021
FIGURES
| View All (5)
Abstract
View articletitled, Toward Gender-Inclusive Coreference Resolution: An Analysis of Gender and Bias Throughout the Machine Learning Lifecycle
View
PDF
for article titled, Toward Gender-Inclusive Coreference Resolution: An Analysis of Gender and Bias Throughout the Machine Learning Lifecycle
Correctly resolving textual mentions of people fundamentally entails making inferences about those people. Such inferences raise the risk of systematic biases in coreference resolution systems, including biases that can harm binary and non-binary trans and cis stakeholders. To better understand such biases, we foreground nuanced conceptualizations of gender from sociology and sociolinguistics, and investigate where in the machine learning pipeline such biases can enter a coreference resolution system. We inspect many existing data sets for trans-exclusionary biases, and develop two new data sets for interrogating bias in both crowd annotations and in existing coreference resolution systems. Through these studies, conducted on English text, we confirm that without acknowledging and building systems that recognize the complexity of gender, we will build systems that fail for: quality of service, stereotyping, and over- or under-representation, especially for binary and non-binary trans users.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2005) 31 (4): 505–530.
Published: 01 December 2005
Abstract
View articletitled, Induction of Word and Phrase Alignments for Automatic Document Summarization
View
PDF
for article titled, Induction of Word and Phrase Alignments for Automatic Document Summarization
Current research in automatic single-document summarization is dominated by two effective, yet naïve approaches: summarization by sentence extraction and headline generation via bagof-words models. While successful in some tasks, neither of these models is able to adequately capture the large set of linguistic devices utilized by humans when they produce summaries. One possible explanation for the widespread use of these models is that good techniques have been developed to extract appropriate training data for them from existing document/abstract and document/ headline corpora. We believe that future progress in automatic summarization will be driven both by the development of more sophisticated, linguistically informed models, as well as a more effective leveraging of document/abstract corpora. In order to open the doors to simultaneously achieving both of these goals, we have developed techniques for automatically producing word-to-word and phrase-to-phrase alignments between documents and their human-written abstracts. These alignments make explicit the correspondences that exist in such document/abstract pairs and create a potentially rich data source from which complex summarization algorithms may learn. This paper describes experiments we have carried out to analyze the ability of humans to perform such alignments, and based on these analyses, we describe experiments for creating them automatically. Our model for the alignment task is based on an extension of the standard hidden Markov model and learns to create alignments in a completely unsupervised fashion. We describe our model in detail and present experimental results that show that our model is able to learn to reliably identify word- and phrase-level alignments in a corpus of (document, abstract) pairs.