Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-7 of 7
Hermann Ney
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2011) 37 (4): 657–688.
Published: 01 December 2011
Abstract
View article
PDF
Evaluation and error analysis of machine translation output are important but difficult tasks. In this article, we propose a framework for automatic error analysis and classification based on the identification of actual erroneous words using the algorithms for computation of Word Error Rate (WER) and Position-independent word Error Rate (PER), which is just a very first step towards development of automatic evaluation measures that provide more specific information of certain translation problems. The proposed approach enables the use of various types of linguistic knowledge in order to classify translation errors in many different ways. This work focuses on one possible set-up, namely, on five error categories: inflectional errors, errors due to wrong word order, missing words, extra words, and incorrect lexical choices. For each of the categories, we analyze the contribution of various POS classes. We compared the results of automatic error analysis with the results of human error analysis in order to investigate two possible applications: estimating the contribution of each error type in a given translation output in order to identify the main sources of errors for a given translation system, and comparing different translation outputs using the introduced error categories in order to obtain more information about advantages and disadvantages of different systems and possibilites for improvements, as well as about advantages and disadvantages of applied methods for improvements. We used Arabic–English Newswire and Broadcast News and Chinese–English Newswire outputs created in the framework of the GALE project, several Spanish and English European Parliament outputs generated during the TC-Star project, and three German–English outputs generated in the framework of the fourth Machine Translation Workshop. We show that our results correlate very well with the results of a human error analysis, and that all our metrics except the extra words reflect well the differences between different versions of the same translation system as well as the differences between different translation systems.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2009) 35 (1): 3–28.
Published: 01 March 2009
Abstract
View article
PDF
Current machine translation (MT) systems are still not perfect. In practice, the output from these systems needs to be edited to correct errors. A way of increasing the productivity of the whole translation process (MT plus human work) is to incorporate the human correction activities within the translation process itself, thereby shifting the MT paradigm to that of computer-assisted translation. This model entails an iterative process in which the human translator activity is included in the loop: In each iteration, a prefix of the translation is validated (accepted or amended) by the human and the system computes its best (or n -best) translation suffix hypothesis to complete this prefix. A successful framework for MT is the so-called statistical (or pattern recognition) framework. Interestingly, within this framework, the adaptation of MT systems to the interactive scenario affects mainly the search process, allowing a great reuse of successful techniques and models. In this article, alignment templates, phrase-based models, and stochastic finite-state transducers are used to develop computer-assisted translation systems. These systems were assessed in a European project (TransType2) in two real tasks: The translation of printer manuals; manuals and the translation of the Bulletin of the European Union . In each task, the following three pairs of languages were involved (in both translation directions): English-Spanish, English-German, and English-French.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2007) 33 (1): 9–40.
Published: 01 March 2007
Abstract
View article
PDF
This article introduces and evaluates several different word-level confidence measures for machine translation. These measures provide a method for labeling each word in an automatically generated translation as correct or incorrect. All approaches to confidence estimation presented here are based on word posterior probabilities. Different concepts of word posterior probabilities as well as different ways of calculating them will be introduced and compared. They can be divided into two categories: System-based methods that explore knowledge provided by the translation system that generated the translations, and direct methods that are independent of the translation system. The system-based techniques make use of system output, such as word graphs or N -best lists. The word posterior probability is determined by summing the probabilities of the sentences in the translation hypothesis space that contains the target word. The direct confidence measures take other knowledge sources, such as word or phrase lexica, into account. They can be applied to output from nonstatistical machine translation systems as well. Experimental assessment of the different confidence measures on various translation tasks and in several language pairs will be presented. Moreover,the application of confidence measures for rescoring of translation hypotheses will be investigated.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2004) 30 (4): 417–449.
Published: 01 December 2004
Abstract
View article
PDF
A phrase-based statistical machine translation approach — the alignment template approach — is described. This translation approach allows for general many-to-many relations between words. Thereby, the context of words is taken into account in the translation model, and local changes in word order from source to target language can be learned explicitly. The model is described using a log-linear modeling approach, which is a generalization of the often used source-channel approach. Thereby, the model is easier to extend than classical statistical machine translation systems. We describe in detail the process for learning phrasal translations, the feature functions used, and the search algorithm. The evaluation of this approach is performed on three different tasks. For the German-English speech Verbmobil task, we analyze the effect of various system components. On the French-English Canadian Hansards task, the alignment template system obtains significantly better results than a single-word-based translation model. In the Chinese-English 2002 National Institute of Standards and Technology (NIST) machine translation evaluation it yields statistically significantly better NIST scores than all competing research and commercial translation systems.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2004) 30 (2): 181–204.
Published: 01 June 2004
Abstract
View article
PDF
In statistical machine translation, correspondences between the words in the source and the target language are learned from parallel corpora, and often little or no linguistic knowledge is used to structure the underlying models. In particular, existing statistical systems for machine translation often treat different inflected forms of the same lemma as if they were independent of one another. The bilingual training data can be better exploited by explicitly taking into account the interdependencies of related inflected forms. We propose the construction of hierarchical lexicon models on the basis of equivalence classes of words. In addition, we introduce sentence-level restructuring transformations which aim at the assimilation of word order in related sentences. We have systematically investigated the amount of bilingual training data required to maintain an acceptable quality of machine translation. The combination of the suggested methods for improving translation quality in frameworks with scarce resources has been successfully tested: We were able to reduce the amount of bilingual training data to less than 10% of the original corpus, while losing only 1.6% in translation quality. The improvement of the translation results is demonstrated on two German-English corpora taken from the Verbmobil task and the Nespole! task.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2003) 29 (1): 19–51.
Published: 01 March 2003
Abstract
View article
PDF
We present and compare various methods for computing word alignments using statistical or heuristic models. We consider the five alignment models presented in Brown, Della Pietra, Della Pietra, and Mercer (1993), the hidden Markov alignment model, smoothing techniques, and refinements. These statistical models are compared with two heuristic models based on the Dice coefficient. We present different methods for combining word alignments to perform a symmetrization of directed statistical alignment models. As evaluation criterion, we use the quality of the resulting Viterbi alignment compared to a manually produced reference alignment. We evaluate the models on the German-English Verbmobil task and the French-English Hansards task. We perform a detailed analysis of various design decisions of our statistical alignment system and evaluate these on training corpora of various sizes. An important result is that refined alignment models with a first-order dependence and a fertility model yield significantly better results than simple heuristic models. In the Appendix, we present an efficient training algorithm for the alignment models presented.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2003) 29 (1): 97–133.
Published: 01 March 2003
Abstract
View article
PDF
In this article, we describe an efficient beam search algorithm for statistical machine translation based on dynamic programming (DP). The search algorithm uses the translation model presented in Brown et al. (1993). Starting from a DP-based solution to the traveling-salesman problem, we present a novel technique to restrict the possible word reorderings between source and target language in order to achieve an efficient search algorithm. Word reordering restrictions especially useful for the translation direction German to English are presented. The restrictions are generalized, and a set of four parameters to control the word reordering is introduced, which then can easily be adopted to new translation directions. The beam search procedure has been successfully tested on the Verbmobil task (German to English, 8,000-word vocabulary) and on the Canadian Hansards task (French to English, 100,000-word vocabulary). For the medium-sized Verbmobil task, a sentence can be translated in a few seconds, only a small number of search errors occur, and there is no performance degradation as measured by the word error criterion used in this article.