Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Hongyan Jing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2002) 28 (4): 527–543.
Published: 01 December 2002
Abstract
View articletitled, Using Hidden Markov Modeling to Decompose Human-Written Summaries
View
PDF
for article titled, Using Hidden Markov Modeling to Decompose Human-Written Summaries
Professional summarizers often reuse original documents to generate summaries. The task of summary sentence decomposition is to deduce whether a summary sentence is constructed by reusing the original text and to identify reused phrases. Specifically, the decomposition program needs to answer three questions for a given summary sentence: (1) Is this summary sentence constructed by reusing the text in the original document? (2) If so, what phrases in the sentence come from the original document? and (3) From where in the document do the phrases come? Solving the decomposition problem can lead to better text generation techniques for summarization. Decomposition can also provide large training and testing corpora for extraction-based summarizers. We propose a hidden Markov model solution to the decomposition problem. Evaluations show that the proposed algorithm performs well.