Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Julie Weeds
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2016) 42 (4): 727–761.
Published: 01 December 2016
FIGURES
| View All (6)
Abstract
View article
PDF
We present a new framework for compositional distributional semantics in which the distributional contexts of lexemes are expressed in terms of anchored packed dependency trees. We show that these structures have the potential to capture the full sentential contexts of a lexeme and provide a uniform basis for the composition of distributional knowledge in a way that captures both mutual disambiguation and generalization.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2007) 33 (4): 553–590.
Published: 01 December 2007
Abstract
View article
PDF
There has been a great deal of recent research into word sense disambiguation, particularly since the inception of the Senseval evaluation exercises. Because a word often has more than one meaning, resolving word sense ambiguity could benefit applications that need some level of semantic interpretation of language input. A major problem is that the accuracy of word sense disambiguation systems is strongly dependent on the quantity of manually sense-tagged data available, and even the best systems, when tagging every word token in a document, perform little better than a simple heuristic that guesses the first, or predominant, sense of a word in all contexts. The success of this heuristic is due to the skewed nature of word sense distributions. Data for the heuristic can come from either dictionaries or a sample of sense-tagged data. However, there is a limited supply of the latter, and the sense distributions and predominant sense of a word can depend on the domain or source of a document. (The first sense of “star” for example would be different in the popular press and scientific journals). In this article, we expand on a previously proposed method for determining the predominant sense of a word automatically from raw text. We look at a number of different data sources and parameterizations of the method, using evaluation results and error analyses to identify where the method performs well and also where it does not. In particular, we find that the method does not work as well for verbs and adverbs as nouns and adjectives, but produces more accurate predominant sense information than the widely used SemCor corpus for nouns with low coverage in that corpus. We further show that the method is able to adapt successfully to domains when using domain specific corpora as input and where the input can either be hand-labeled for domain or automatically classified.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2005) 31 (4): 439–475.
Published: 01 December 2005
Abstract
View article
PDF
Techniques that exploit knowledge of distributional similarity between words have been proposed in many areas of Natural Language Processing. For example, in language modeling, the sparse data problem can be alleviated by estimating the probabilities of unseen co-occurrences of events from the probabilities of seen co-occurrences of similar events. In other applications, distributional similarity is taken to be an approximation to semantic similarity. However, due to the wide range of potential applications and the lack of a strict definition of the concept of distributional similarity, many methods of calculating distributional similarity have been proposed or adopted. In this work, a flexible, parameterized framework for calculating distributional similarity is proposed. Within this framework, the problem of finding distributionally similar words is cast as one of co-occurrence retrieval (CR) for which precision and recall can be measured by analogy with the way they are measured in document retrieval. As will be shown, a number of popular existing measures of distributional similarity are simulated with parameter settings within the CR framework. In this article, the CR framework is then used to systematically investigate three fundamental questions concerning distributional similarity. First, is the relationship of lexical similarity necessarily symmetric, or are there advantages to be gained from considering it as an asymmetric relationship? Second, are some co-occurrences inherently more salient than others in the calculation of distributional similarity? Third, is it necessary to consider the difference in the extent to which each word occurs in each co-occurrence type? Two application-based tasks are used for evaluation: automatic thesaurus generation and pseudo-disambiguation. It is possible to achieve significantly better results on both these tasks by varying the parameters within the CR framework rather than using other existing distributional similarity measures; it will also be shown that any single unparameterized measure is unlikely to be able to do better on both tasks. This is due to an inherent asymmetry in lexical substitutability and therefore also in lexical distributional similarity.