Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Kevin Knight
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2010) 36 (3): 295–302.
Published: 01 September 2010
Abstract
View article
PDF
Word alignment is a critical procedure within statistical machine translation (SMT). Brown et al. (1993) have provided the most popular word alignment algorithm to date, one that has been implemented in the GIZA (Al-Onaizan et al., 1999) and GIZA++ (Och and Ney 2003) software and adopted by nearly every SMT project. In this article, we investigate whether this algorithm makes search errors when it computes Viterbi alignments, that is, whether it returns alignments that are sub-optimal according to a trained model.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2010) 36 (2): 247–277.
Published: 01 June 2010
Abstract
View article
PDF
This article shows that the structure of bilingual material from standard parsing and alignment tools is not optimal for training syntax-based statistical machine translation (SMT) systems. We present three modifications to the MT training data to improve the accuracy of a state-of-the-art syntax MT system: re-structuring changes the syntactic structure of training parse trees to enable reuse of substructures; re-labeling alters bracket labels to enrich rule application context; and re-aligning unifies word alignment across sentences to remove bad word alignments and refine good ones. Better structures, labels, and word alignments are learned by the EM algorithm. We show that each individual technique leads to improvement as measured by BLEU, and we also show that the greatest improvement is achieved by combining them. We report an overall 1.48 BLEU improvement on the NIST08 evaluation set over a strong baseline in Chinese/English translation.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2009) 35 (4): 559–595.
Published: 01 December 2009
Abstract
View article
PDF
Systems based on synchronous grammars and tree transducers promise to improve the quality of statistical machine translation output, but are often very computationally intensive. The complexity is exponential in the size of individual grammar rules due to arbitrary re-orderings between the two languages. We develop a theory of binarization for synchronous context-free grammars and present a linear-time algorithm for binarizing synchronous rules when possible. In our large-scale experiments, we found that almost all rules are binarizable and the resulting binarized rule set significantly improves the speed and accuracy of a state-of-the-art syntax-based machine translation system. We also discuss the more general, and computationally more difficult, problem of finding good parsing strategies for non-binarizable rules, and present an approximate polynomial-time algorithm for this problem.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2008) 34 (3): 391–427.
Published: 01 September 2008
Abstract
View article
PDF
Many probabilistic models for natural language are now written in terms of hierarchical tree structure. Tree-based modeling still lacks many of the standard tools taken for granted in (finite-state) string-based modeling. The theory of tree transducer automata provides a possible framework to draw on, as it has been worked out in an extensive literature. We motivate the use of tree transducers for natural language and address the training problem for probabilistic tree-to-tree and tree-to-string transducers.