Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Lane Schwartz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2021) 47 (1): 181–216.
Published: 21 April 2021
FIGURES
| View All (20)
Abstract
View article
PDF
This article describes a simple PCFG induction model with a fixed category domain that predicts a large majority of attested constituent boundaries, and predicts labels consistent with nearly half of attested constituent labels on a standard evaluation data set of child-directed speech. The article then explores the idea that the difference between simple grammars exhibited by child learners and fully recursive grammars exhibited by adult learners may be an effect of increasing working memory capacity, where the shallow grammars are constrained images of the recursive grammars. An implementation of these memory bounds as limits on center embedding in a depth-specific transform of a recursive grammar yields a significant improvement over an equivalent but unbounded baseline, suggesting that this arrangement may indeed confer a learning advantage.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2010) 36 (1): 1–30.
Published: 01 March 2010
Abstract
View article
PDF
Human syntactic processing shows many signs of taking place within a general-purpose short-term memory. But this kind of memory is known to have a severely constrained storage capacity—possibly constrained to as few as three or four distinct elements. This article describes a model of syntactic processing that operates successfully within these severe constraints, by recognizing constituents in a right-corner transformed representation (a variant of left-corner parsing) and mapping this representation to random variables in a Hierarchic Hidden Markov Model, a factored time-series model which probabilistically models the contents of a bounded memory store over time. Evaluations of the coverage of this model on a large syntactically annotated corpus of English sentences, and the accuracy of a a bounded-memory parsing strategy based on this model, suggest this model may be cognitively plausible.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2009) 35 (3): 313–343.
Published: 01 September 2009
Abstract
View article
PDF
This article describes a framework for incorporating referential semantic information from a world model or ontology directly into a probabilistic language model of the sort commonly used in speech recognition, where it can be probabilistically weighted together with phonological and syntactic factors as an integral part of the decoding process. Introducing world model referents into the decoding search greatly increases the search space, but by using a single integrated phonological, syntactic, and referential semantic language model, the decoder is able to incrementally prune this search based on probabilities associated with these combined contexts. The result is a single unified referential semantic probability model which brings several kinds of context to bear in speech decoding, and performs accurate recognition in real time on large domains in the absence of example in-domain training sentences.