Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Laura Perez-Beltrachini
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2017) 43 (1): 1–30.
Published: 01 April 2017
FIGURES
| View All (5)
Abstract
View article
PDF
Although there has been much work in recent years on data-driven natural language generation, little attention has been paid to the fine-grained interactions that arise during microplanning between aggregation, surface realization, and sentence segmentation. In this article, we propose a hybrid symbolic/statistical approach to jointly model the constraints regulating these interactions. Our approach integrates a small handwritten grammar, a statistical hypertagger, and a surface realization algorithm. It is applied to the verbalization of knowledge base queries and tested on 13 knowledge bases to demonstrate domain independence. We evaluate our approach in several ways. A quantitative analysis shows that the hybrid approach outperforms a purely symbolic approach in terms of both speed and coverage. Results from a human study indicate that users find the output of this hybrid statistic/symbolic system more fluent than both a template-based and a purely symbolic grammar-based approach. Finally, we illustrate by means of examples that our approach can account for various factors impacting aggregation, sentence segmentation, and surface realization.