Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Liang Huang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2015) 41 (1): 119–147.
Published: 01 March 2015
FIGURES
| View All (14)
Abstract
View article
PDF
Manually annotated corpora are indispensable resources, yet for many annotation tasks, such as the creation of treebanks, there exist multiple corpora with different and incompatible annotation guidelines. This leads to an inefficient use of human expertise, but it could be remedied by integrating knowledge across corpora with different annotation guidelines. In this article we describe the problem of annotation adaptation and the intrinsic principles of the solutions, and present a series of successively enhanced models that can automatically adapt the divergence between different annotation formats. We evaluate our algorithms on the tasks of Chinese word segmentation and dependency parsing. For word segmentation, where there are no universal segmentation guidelines because of the lack of morphology in Chinese, we perform annotation adaptation from the much larger People's Daily corpus to the smaller but more popular Penn Chinese Treebank. For dependency parsing, we perform annotation adaptation from the Penn Chinese Treebank to a semantics-oriented Dependency Treebank, which is annotated using significantly different annotation guidelines. In both experiments, automatic annotation adaptation brings significant improvement, achieving state-of-the-art performance despite the use of purely local features in training.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2009) 35 (4): 559–595.
Published: 01 December 2009
Abstract
View article
PDF
Systems based on synchronous grammars and tree transducers promise to improve the quality of statistical machine translation output, but are often very computationally intensive. The complexity is exponential in the size of individual grammar rules due to arbitrary re-orderings between the two languages. We develop a theory of binarization for synchronous context-free grammars and present a linear-time algorithm for binarizing synchronous rules when possible. In our large-scale experiments, we found that almost all rules are binarizable and the resulting binarized rule set significantly improves the speed and accuracy of a state-of-the-art syntax-based machine translation system. We also discuss the more general, and computationally more difficult, problem of finding good parsing strategies for non-binarizable rules, and present an approximate polynomial-time algorithm for this problem.