Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Mihai Surdeanu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2023) 49 (1): 117–156.
Published: 01 March 2023
FIGURES
| View All (13)
Abstract
View articletitled, It Takes Two Flints to Make a Fire: Multitask Learning of Neural Relation and Explanation Classifiers
View
PDF
for article titled, It Takes Two Flints to Make a Fire: Multitask Learning of Neural Relation and Explanation Classifiers
We propose an explainable approach for relation extraction that mitigates the tension between generalization and explainability by jointly training for the two goals. Our approach uses a multi-task learning architecture, which jointly trains a classifier for relation extraction, and a sequence model that labels words in the context of the relations that explain the decisions of the relation classifier. We also convert the model outputs to rules to bring global explanations to this approach. This sequence model is trained using a hybrid strategy: supervised, when supervision from pre-existing patterns is available, and semi-supervised otherwise. In the latter situation, we treat the sequence model’s labels as latent variables, and learn the best assignment that maximizes the performance of the relation classifier. We evaluate the proposed approach on the two datasets and show that the sequence model provides labels that serve as accurate explanations for the relation classifier’s decisions, and, importantly, that the joint training generally improves the performance of the relation classifier. We also evaluate the performance of the generated rules and show that the new rules are a great add-on to the manual rules and bring the rule-based system much closer to the neural models.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2017) 43 (2): 407–449.
Published: 01 June 2017
FIGURES
| View All (6)
Abstract
View articletitled, Framing QA as Building and Ranking Intersentence Answer Justifications
View
PDF
for article titled, Framing QA as Building and Ranking Intersentence Answer Justifications
We propose a question answering (QA) approach for standardized science exams that both identifies correct answers and produces compelling human-readable justifications for why those answers are correct. Our method first identifies the actual information needed in a question using psycholinguistic concreteness norms, then uses this information need to construct answer justifications by aggregating multiple sentences from different knowledge bases using syntactic and lexical information. We then jointly rank answers and their justifications using a reranking perceptron that treats justification quality as a latent variable. We evaluate our method on 1,000 multiple-choice questions from elementary school science exams, and empirically demonstrate that it performs better than several strong baselines, including neural network approaches. Our best configuration answers 44% of the questions correctly, where the top justifications for 57% of these correct answers contain a compelling human-readable justification that explains the inference required to arrive at the correct answer. We include a detailed characterization of the justification quality for both our method and a strong baseline, and show that information aggregation is key to addressing the information need in complex questions.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2013) 39 (4): 885–916.
Published: 01 December 2013
FIGURES
Abstract
View articletitled, Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules
View
PDF
for article titled, Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules
We propose a new deterministic approach to coreference resolution that combines the global information and precise features of modern machine-learning models with the transparency and modularity of deterministic, rule-based systems. Our sieve architecture applies a battery of deterministic coreference models one at a time from highest to lowest precision, where each model builds on the previous model's cluster output. The two stages of our sieve-based architecture, a mention detection stage that heavily favors recall, followed by coreference sieves that are precision-oriented, offer a powerful way to achieve both high precision and high recall. Further, our approach makes use of global information through an entity-centric model that encourages the sharing of features across all mentions that point to the same real-world entity. Despite its simplicity, our approach gives state-of-the-art performance on several corpora and genres, and has also been incorporated into hybrid state-of-the-art coreference systems for Chinese and Arabic. Our system thus offers a new paradigm for combining knowledge in rule-based systems that has implications throughout computational linguistics.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2013) 39 (3): 631–663.
Published: 01 September 2013
FIGURES
Abstract
View articletitled, Selectional Preferences for Semantic Role Classification
View
PDF
for article titled, Selectional Preferences for Semantic Role Classification
This paper focuses on a well-known open issue in Semantic Role Classification (SRC) research: the limited influence and sparseness of lexical features. We mitigate this problem using models that integrate automatically learned selectional preferences (SP). We explore a range of models based on WordNet and distributional-similarity SPs. Furthermore, we demonstrate that the SRC task is better modeled by SP models centered on both verbs and prepositions, rather than verbs alone. Our experiments with SP-based models in isolation indicate that they outperform a lexical baseline with 20 F 1 points in domain and almost 40 F 1 points out of domain. Furthermore, we show that a state-of-the-art SRC system extended with features based on selectional preferences performs significantly better, both in domain (17% error reduction) and out of domain (13% error reduction). Finally, we show that in an end-to-end semantic role labeling system we obtain small but statistically significant improvements, even though our modified SRC model affects only approximately 4% of the argument candidates. Our post hoc error analysis indicates that the SP-based features help mostly in situations where syntactic information is either incorrect or insufficient to disambiguate the correct role.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2011) 37 (2): 351–383.
Published: 01 June 2011
Abstract
View articletitled, Learning to Rank Answers to Non-Factoid Questions from Web Collections
View
PDF
for article titled, Learning to Rank Answers to Non-Factoid Questions from Web Collections
This work investigates the use of linguistically motivated features to improve search, in particular for ranking answers to non-factoid questions. We show that it is possible to exploit existing large collections of question–answer pairs (from online social Question Answering sites) to extract such features and train ranking models which combine them effectively. We investigate a wide range of feature types, some exploiting natural language processing such as coarse word sense disambiguation, named-entity identification, syntactic parsing, and semantic role labeling. Our experiments demonstrate that linguistic features, in combination, yield considerable improvements in accuracy. Depending on the system settings we measure relative improvements of 14% to 21% in Mean Reciprocal Rank and Precision@1, providing one of the most compelling evidence to date that complex linguistic features such as word senses and semantic roles can have a significant impact on large-scale information retrieval tasks.