Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-11 of 11
Mirella Lapata
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2021) 47 (2): 445–476.
Published: 13 July 2021
FIGURES
| View All (17)
Abstract
View article
PDF
We consider the task of crosslingual semantic parsing in the style of Discourse Representation Theory (DRT) where knowledge from annotated corpora in a resource-rich language is transferred via bitext to guide learning in other languages. We introduce 𝕌niversal Discourse Representation Theory (𝕌DRT), a variant of DRT that explicitly anchors semantic representations to tokens in the linguistic input. We develop a semantic parsing framework based on the Transformer architecture and utilize it to obtain semantic resources in multiple languages following two learning schemes. The many-to-one approach translates non-English text to English, and then runs a relatively accurate English parser on the translated text, while the one-to-many approach translates gold standard English to non-English text and trains multiple parsers (one per language) on the translations. Experimental results on the Parallel Meaning Bank show that our proposal outperforms strong baselines by a wide margin and can be used to construct (silver-standard) meaning banks for 99 languages.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2019) 45 (1): 59–94.
Published: 01 March 2019
FIGURES
| View All (5)
Abstract
View article
PDF
This article describes a neural semantic parser that maps natural language utterances onto logical forms that can be executed against a task-specific environment, such as a knowledge base or a database, to produce a response. The parser generates tree-structured logical forms with a transition-based approach, combining a generic tree-generation algorithm with domain-general grammar defined by the logical language. The generation process is modeled by structured recurrent neural networks, which provide a rich encoding of the sentential context and generation history for making predictions. To tackle mismatches between natural language and logical form tokens, various attention mechanisms are explored. Finally, we consider different training settings for the neural semantic parser, including fully supervised training where annotated logical forms are given, weakly supervised training where denotations are provided, and distant supervision where only unlabeled sentences and a knowledge base are available. Experiments across a wide range of data sets demonstrate the effectiveness of our parser.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2014) 40 (3): 633–669.
Published: 01 September 2014
FIGURES
| View All (7)
Abstract
View article
PDF
As in many natural language processing tasks, data-driven models based on supervised learning have become the method of choice for semantic role labeling. These models are guaranteed to perform well when given sufficient amount of labeled training data. Producing this data is costly and time-consuming, however, thus raising the question of whether unsupervised methods offer a viable alternative. The working hypothesis of this article is that semantic roles can be induced without human supervision from a corpus of syntactically parsed sentences based on three linguistic principles: (1) arguments in the same syntactic position (within a specific linking) bear the same semantic role, (2) arguments within a clause bear a unique role, and (3) clusters representing the same semantic role should be more or less lexically and distributionally equivalent. We present a method that implements these principles and formalizes the task as a graph partitioning problem, whereby argument instances of a verb are represented as vertices in a graph whose edges express similarities between these instances. The graph consists of multiple edge layers, each one capturing a different aspect of argument-instance similarity, and we develop extensions of standard clustering algorithms for partitioning such multi-layer graphs. Experiments for English and German demonstrate that our approach is able to induce semantic role clusters that are consistently better than a strong baseline and are competitive with the state of the art.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2012) 38 (1): 135–171.
Published: 01 March 2012
FIGURES
| View All (9)
Abstract
View article
PDF
Large-scale annotated corpora are a prerequisite to developing high-performance semantic role labeling systems. Unfortunately, such corpora are expensive to produce, limited in size, and may not be representative. Our work aims to reduce the annotation effort involved in creating resources for semantic role labeling via semi-supervised learning. The key idea of our approach is to find novel instances for classifier training based on their similarity to manually labeled seed instances. The underlying assumption is that sentences that are similar in their lexical material and syntactic structure are likely to share a frame semantic analysis. We formalize the detection of similar sentences and the projection of role annotations as a graph alignment problem, which we solve exactly using integer linear programming. Experimental results on semantic role labeling show that the automatic annotations produced by our method improve performance over using hand-labeled instances alone.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2010) 36 (3): 411–441.
Published: 01 September 2010
Abstract
View article
PDF
Sentence compression holds promise for many applications ranging from summarization to subtitle generation. The task is typically performed on isolated sentences without taking the surrounding context into account, even though most applications would operate over entire documents. In this article we present a discourse-informed model which is capable of producing document compressions that are coherent and informative. Our model is inspired by theories of local coherence and formulated within the framework of integer linear programming. Experimental results show significant improvements over a state-of-the-art discourse agnostic approach.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2008) 34 (4): 597–614.
Published: 01 December 2008
Abstract
View article
PDF
Automatic paraphrasing is an important component in many natural language processing tasks. In this article we present a new parallel corpus with paraphrase annotations. We adopt a definition of paraphrase based on word alignments and show that it yields high inter-annotator agreement. As Kappa is suited to nominal data, we employ an alternative agreement statistic which is appropriate for structured alignment tasks. We discuss how the corpus can be usefully employed in evaluating paraphrase systems automatically (e.g., by measuring precision, recall, and F1) and also in developing linguistically rich paraphrase models based on syntactic structure.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2008) 34 (1): 1–34.
Published: 01 March 2008
Abstract
View article
PDF
This article proposes a novel framework for representing and measuring local coherence. Central to this approach is the entity-grid representation of discourse, which captures patterns of entity distribution in a text. The algorithm introduced in the article automatically abstracts a text into a set of entity transition sequences and records distributional, syntactic, and referential information about discourse entities. We re-conceptualize coherence assessment as a learning task and show that our entity-based representation is well-suited for ranking-based generation and text classification tasks. Using the proposed representation, we achieve good performance on text ordering, summary coherence evaluation, and readability assessment.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2007) 33 (2): 161–199.
Published: 01 June 2007
Abstract
View article
PDF
Traditionally, vector-based semantic space models use word co-occurrence counts from large corpora to represent lexical meaning. In this article we present a novel framework for constructing semantic spaces that takes syntactic relations into account. We introduce a formalization for this class of models, which allows linguistic knowledge to guide the construction process. We evaluate our framework on a range of tasks relevant for cognitive science and natural language processing: semantic priming, synonymy detection, and word sense disambiguation. In all cases, our framework obtains results that are comparable or superior to the state of the art.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2006) 32 (4): 471–484.
Published: 01 December 2006
Abstract
View article
PDF
This article considers the automatic evaluation of information ordering, a task underlying many text-based applications such as concept-to-text generation and multidocument summarization. We propose an evaluation method based on Kendall's τ, a metric of rank correlation. The method is inexpensive, robust, and representation independent. We show that Kendall's τ correlates reliably with human ratings and reading times.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2004) 30 (1): 45–73.
Published: 01 March 2004
Abstract
View article
PDF
Levin's (1993) study of verb classes is a widely used resource for lexical semantics. In her framework, some verbs, such as give, exhibit no class ambiguity. But other verbs, such as write, have several alternative classes. We extend Levin's inventory to a simple statistical model of verb class ambiguity. Using this model we are able to generate preferences for ambiguous verbs without the use of a disambiguated corpus. We additionally show that these preferences are useful as priors for a verb sense disambiguator.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2003) 29 (3): 459–484.
Published: 01 September 2003
Abstract
View article
PDF
This article shows that the Web can be employed to obtain frequencies for bigrams that are unseen in a given corpus. We describe a method for retrieving counts for adjective-noun, noun-noun, and verb-object bigrams from the Web by querying a search engine. We evaluate this method by demonstrating: (a) a high correlation between Web frequencies and corpus frequencies; (b) a reliable correlation between Web frequencies and plausibility judgments; (c) a reliable correlation between Web frequencies and frequencies recreated using class-based smoothing; (d) a good performance of Web frequencies in a pseudo disambiguation task.