Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Nianwen Xue
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2017) 43 (3): 521–565.
Published: 01 September 2017
FIGURES
| View All (7)
Abstract
View article
PDF
In this article, we conduct an empirical investigation of translation divergences between Chinese and English relying on a parallel treebank. To do this, we first devise a hierarchical alignment scheme where Chinese and English parse trees are aligned in a way that eliminates conflicts and redundancies between word alignments and syntactic parses to prevent the generation of spurious translation divergences. Using this Hierarchically Aligned Chinese–English Parallel Treebank (HACEPT), we are able to semi-automatically identify and categorize the translation divergences between the two languages and quantify each type of translation divergence. Our results show that the translation divergences are much broader than described in previous studies that are largely based on anecdotal evidence and linguistic knowledge. The distribution of the translation divergences also shows that some high-profile translation divergences that motivate previous research are actually very rare in our data, whereas other translation divergences that have previously received little attention actually exist in large quantities. We also show that HACEPT allows the extraction of syntax-based translation rules, most of which are expressive enough to capture the translation divergences, and point out that the syntactic annotation in existing treebanks is not optimal for extracting such translation rules. We also discuss the implications of our study for attempts to bridge translation divergences by devising shared semantic representations across languages. Our quantitative results lend further support to the observation that although it is possible to bridge some translation divergences with semantic representations, other translation divergences are open-ended, thus building a semantic representation that captures all possible translation divergences may be impractical.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2008) 34 (2): 225–255.
Published: 01 June 2008
Abstract
View article
PDF
In this article we report work on Chinese semantic role labeling, taking advantage of two recently completed corpora, the Chinese PropBank, a semantically annotated corpus of Chinese verbs, and the Chinese Nombank, a companion corpus that annotates the predicate-argument structure of nominalized predicates. Because the semantic role labels are assigned to the constituents in a parse tree, we first report experiments in which semantic role labels are automatically assigned to hand-crafted parses in the Chinese Treebank. This gives us a measure of the extent to which semantic role labels can be bootstrapped from the syntactic annotation provided in the treebank. We then report experiments using automatic parses with decreasing levels of human annotation in the input to the syntactic parser: parses that use gold-standard segmentation and POS-tagging, parses that use only gold-standard segmentation, and fully automatic parses. These experiments gauge how successful semantic role labeling for Chinese can be in more realistic situations. Our results show that when hand-crafted parses are used, semantic role labeling accuracy for Chinese is comparable to what has been reported for the state-of-the-art English semantic role labeling systems trained and tested on the English PropBank, even though the Chinese PropBank is significantly smaller in size. When an automatic parser is used, however, the accuracy of our system is significantly lower than the English state of the art. This indicates that an improvement in Chinese parsing is critical to high-performance semantic role labeling for Chinese.