Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Paola Merlo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2018) 44 (2): 379–385.
Published: 01 June 2018
FIGURES
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2016) 42 (2): 351–352.
Published: 01 June 2016
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2013) 39 (4): 949–998.
Published: 01 December 2013
FIGURES
| View All (14)
Abstract
View article
PDF
Current investigations in data-driven models of parsing have shifted from purely syntactic analysis to richer semantic representations, showing that the successful recovery of the meaning of text requires structured analyses of both its grammar and its semantics. In this article, we report on a joint generative history-based model to predict the most likely derivation of a dependency parser for both syntactic and semantic dependencies, in multiple languages. Because these two dependency structures are not isomorphic, we propose a weak synchronization at the level of meaningful subsequences of the two derivations. These synchronized subsequences encompass decisions about the left side of each individual word. We also propose novel derivations for semantic dependency structures, which are appropriate for the relatively unconstrained nature of these graphs. To train a joint model of these synchronized derivations, we make use of a latent variable model of parsing, the Incremental Sigmoid Belief Network (ISBN) architecture. This architecture induces latent feature representations of the derivations, which are used to discover correlations both within and between the two derivations, providing the first application of ISBNs to a multi-task learning problem. This joint model achieves competitive performance on both syntactic and semantic dependency parsing for several languages. Because of the general nature of the approach, this extension of the ISBN architecture to weakly synchronized syntactic-semantic derivations is also an exemplification of its applicability to other problems where two independent, but related, representations are being learned.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2006) 32 (3): 341–378.
Published: 01 September 2006
Abstract
View article
PDF
In this article we refine the formulation of the problem of prepositional phrase (PP) attachment as a four-way disambiguation problem. We argue that, in interpreting PPs, both knowledge about the site of the attachment (the traditional noun-verb attachment distinction) and the nature of the attachment (the distinction of arguments from adjuncts) are needed. We introduce a method to learn arguments and adjuncts based on a definition of arguments as a vector of features. In a series of supervised classification experiments, first we explore the features that enable us to learn the distinction between arguments and adjuncts. We find that both linguistic diagnostics of argumenthood and lexical semantic classes are useful. Second, we investigate the best method to reach the four-way classification of potentially ambiguous prepositional phrases. We find that whereas it is overall better to solve the problem as a single four-way classification task, verb arguments are sometimes more precisely identified if the classification is done as a two-step process, first choosing the attachment site and then labeling it as argument or adjunct.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2004) 30 (4): 525–527.
Published: 01 December 2004
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2001) 27 (3): 373–408.
Published: 01 September 2001
Abstract
View article
PDF
Automatic acquisition of lexical knowledge is critical to a wide range of natural language processing tasks. Especially important is knowledge about verbs, which are the primary source of relational information in a sentence-the predicate-argument structure that relates an action or state to its participants (i.e., who did what to whom). In this work, we report on supervised learning experiments to automatically classify three major types of English verbs, based on their argument structure-specifically, the thematic roles they assign to participants. We use linguistically-motivated statistical indicators extracted from large annotated corpora to train the classifier, achieving 69.8% accuracy for a task whose baseline is 34%, and whose expert-based upper bound we calculate at 86.5%. A detailed analysis of the performance of the algorithm and of its errors confirms that the proposed features capture properties related to the argument structure of the verbs. Our results validate our hypotheses that knowledge about thematic relations is crucial for verb classification, and that it can be gleaned from a corpus by automatic means. We thus demonstrate an effective combination of deeper linguistic knowledge with the robustness and scalability of statistical techniques.