Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Paola Velardi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2017) 43 (1): 181–200.
Published: 01 April 2017
FIGURES
Abstract
View article
PDF
Hashtags are creative labels used in micro-blogs to characterize the topic of a message/discussion. Regardless of the use for which they were originally intended, hashtags cannot be used as a means to cluster messages with similar content. First, because hashtags are created in a spontaneous and highly dynamic way by users in multiple languages, the same topic can be associated with different hashtags, and conversely, the same hashtag may refer to different topics in different time periods. Second, contrary to common words, hashtag disambiguation is complicated by the fact that no sense catalogs (e.g., Wikipedia or WordNet) are available; and, furthermore, hashtag labels are difficult to analyze, as they often consist of acronyms, concatenated words, and so forth. A common way to determine the meaning of hashtags has been to analyze their context, but, as we have just pointed out, hashtags can have multiple and variable meanings. In this article, we propose a temporal sense clustering algorithm based on the idea that semantically related hashtags have similar and synchronous usage patterns.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2013) 39 (3): 665–707.
Published: 01 September 2013
FIGURES
| View All (13)
Abstract
View article
PDF
In 2004 we published in this journal an article describing OntoLearn, one of the first systems to automatically induce a taxonomy from documents and Web sites. Since then, OntoLearn has continued to be an active area of research in our group and has become a reference work within the community. In this paper we describe our next-generation taxonomy learning methodology, which we name OntoLearn Reloaded. Unlike many taxonomy learning approaches in the literature, our novel algorithm learns both concepts and relations entirely from scratch via the automated extraction of terms, definitions, and hypernyms. This results in a very dense, cyclic and potentially disconnected hypernym graph. The algorithm then induces a taxonomy from this graph via optimal branching and a novel weighting policy. Our experiments show that we obtain high-quality results, both when building brand-new taxonomies and when reconstructing sub-hierarchies of existing taxonomies.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2004) 30 (2): 151–179.
Published: 01 June 2004
Abstract
View article
PDF
We present a method and a tool, OntoLearn, aimed at the extraction of domain ontologies from Web sites, and more generally from documents shared among the members of virtual organizations. OntoLearn first extracts a domain terminology from available documents. Then, complex domain terms are semantically interpreted and arranged in a hierarchical fashion. Finally, a general-purpose ontology, WordNet, is trimmed and enriched with the detected domain concepts. The major novel aspect of this approach is semantic interpretation, that is, the association of a complex concept with a complex term. This involves finding the appropriate WordNet concept for each word of a terminological string and the appropriate conceptual relations that hold among the concept components. Semantic interpretation is based on a new word sense disambiguation algorithm, called structural semantic interconnections.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2001) 27 (1): 123–131.
Published: 01 March 2001
Abstract
View article
PDF
Proper nouns form an open class, making the incompleteness of manually or automatically learned classification rules an obvious problem. The purpose of this paper is twofold: first, to suggest the use of a complementary “backup” method to increase the robustness of any hand-crafted or machine-learning-based NE tagger; and second, to explore the effectiveness of using more fine-grained evidence—namely, syntactic and semantic contextual knowledge—in classifying NEs.