Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Rudra Ranajee Saha
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2024) 50 (1): 193–235.
Published: 01 March 2024
FIGURES
| View All (9)
Abstract
View article
PDF
Identification of stance has recently gained a lot of attention with the extreme growth of fake news and filter bubbles. Over the last decade, many feature-based and deep-learning approaches have been proposed to solve stance detection. However, almost none of the existing works focus on providing a meaningful explanation for their prediction. In this work, we study stance detection with an emphasis on generating explanations for the predicted stance by capturing the pivotal argumentative structure embedded in a document. We propose to build a stance tree that utilizes rhetorical parsing to construct an evidence tree and to use Dempster Shafer Theory to aggregate the evidence. Human studies show that our unsupervised technique of generating stance explanations outperforms the SOTA extractive summarization method in terms of informativeness, non-redundancy, coverage, and overall quality. Furthermore, experiments show that our explanation-based stance prediction excels or matches the performance of the SOTA model on various benchmark datasets.