Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Sadid A. Hasan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2015) 41 (1): 1–20.
Published: 01 March 2015
FIGURES
Abstract
View article
PDF
This paper is concerned with automatic generation of all possible questions from a topic of interest. Specifically, we consider that each topic is associated with a body of texts containing useful information about the topic. Then, questions are generated by exploiting the named entity information and the predicate argument structures of the sentences present in the body of texts. The importance of the generated questions is measured using Latent Dirichlet Allocation by identifying the subtopics (which are closely related to the original topic) in the given body of texts and applying the Extended String Subsequence Kernel to calculate their similarity with the questions. We also propose the use of syntactic tree kernels for the automatic judgment of the syntactic correctness of the questions. The questions are ranked by considering both their importance (in the context of the given body of texts) and syntactic correctness. To the best of our knowledge, no previous study has accomplished this task in our setting. A series of experiments demonstrate that the proposed topic-to-question generation approach can significantly outperform the state-of-the-art results.