Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Shujie Liu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2015) 41 (2): 293–336.
Published: 01 June 2015
FIGURES
| View All (13)
Abstract
View article
PDF
We present a statistical parsing framework for sentence-level sentiment classification in this article. Unlike previous works that use syntactic parsing results for sentiment analysis, we develop a statistical parser to directly analyze the sentiment structure of a sentence. We show that complicated phenomena in sentiment analysis (e.g., negation, intensification, and contrast) can be handled the same way as simple and straightforward sentiment expressions in a unified and probabilistic way. We formulate the sentiment grammar upon Context-Free Grammars (CFGs), and provide a formal description of the sentiment parsing framework. We develop the parsing model to obtain possible sentiment parse trees for a sentence, from which the polarity model is proposed to derive the sentiment strength and polarity, and the ranking model is dedicated to selecting the best sentiment tree. We train the parser directly from examples of sentences annotated only with sentiment polarity labels but without any syntactic annotations or polarity annotations of constituents within sentences. Therefore we can obtain training data easily. In particular, we train a sentiment parser, s.parser, from a large amount of review sentences with users' ratings as rough sentiment polarity labels. Extensive experiments on existing benchmark data sets show significant improvements over baseline sentiment classification approaches.