Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Sinno Jialin Pan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2021) 47 (4): 775–812.
Published: 23 December 2021
FIGURES
| View All (8)
Abstract
View article
PDF
Currently, deep learning models have been widely adopted and achieved promising results on various application domains. Despite their intriguing performance, most deep learning models function as black boxes, lacking explicit reasoning capabilities and explanations, which are usually essential for complex problems. Take joint inference in information extraction as an example. This task requires the identification of multiple structured knowledge from texts, which is inter-correlated, including entities, events, and the relationships between them. Various deep neural networks have been proposed to jointly perform entity extraction and relation prediction, which only propagate information implicitly via representation learning. However, they fail to encode the intensive correlations between entity types and relations to enforce their coexistence. On the other hand, some approaches adopt rules to explicitly constrain certain relational facts, although the separation of rules with representation learning usually restrains the approaches with error propagation. Moreover, the predefined rules are inflexible and might result in negative effects when data is noisy. To address these limitations, we propose a variational deep logic network that incorporates both representation learning and relational reasoning via the variational EM algorithm. The model consists of a deep neural network to learn high-level features with implicit interactions via the self-attention mechanism and a relational logic network to explicitly exploit target interactions. These two components are trained interactively to bring the best of both worlds. We conduct extensive experiments ranging from fine-grained sentiment terms extraction, end-to-end relation prediction, to end-to-end event extraction to demonstrate the effectiveness of our proposed method.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2019) 45 (4): 705–736.
Published: 01 January 2020
FIGURES
| View All (10)
Abstract
View article
PDF
In fine-grained opinion mining, extracting aspect terms (a.k.a. opinion targets) and opinion terms (a.k.a. opinion expressions) from user-generated texts is the most fundamental task in order to generate structured opinion summarization. Existing studies have shown that the syntactic relations between aspect and opinion words play an important role for aspect and opinion terms extraction. However, most of the works either relied on predefined rules or separated relation mining with feature learning. Moreover, these works only focused on single-domain extraction, which failed to adapt well to other domains of interest where only unlabeled data are available. In real-world scenarios, annotated resources are extremely scarce for many domains, motivating knowledge transfer strategies from labeled source domain(s) to any unlabeled target domain. We observe that syntactic relations among target words to be extracted are not only crucial for single-domain extraction, but also serve as invariant “pivot” information to bridge the gap between different domains. In this article, we explore the constructions of recursive neural networks based on the dependency tree of each sentence for associating syntactic structure with feature learning. Furthermore, we construct transferable recursive neural networks to automatically learn the domain-invariant fine-grained interactions among aspect words and opinion words. The transferability is built on an auxiliary task and a conditional domain adversarial network to reduce domain distribution difference in the hidden spaces effectively in word level through syntactic relations. Specifically, the auxiliary task builds structural correspondences across domains by predicting the dependency relation for each path of the dependency tree in the recursive neural network. The conditional domain adversarial network helps to learn domain-invariant hidden representation for each word conditioned on the syntactic structure. In the end, we integrate the recursive neural network with a sequence labeling classifier on top that models contextual influence in the final predictions. Extensive experiments and analysis are conducted to demonstrate the effectiveness of the proposed model and each component on three benchmark data sets.