Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Tagyoung Chung
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2014) 40 (1): 203–229.
Published: 01 March 2014
FIGURES
| View All (6)
Abstract
View article
PDF
We study the problem of sampling trees from forests, in the setting where probabilities for each tree may be a function of arbitrarily large tree fragments. This setting extends recent work for sampling to learn Tree Substitution Grammars to the case where the tree structure (TSG derived tree) is not fixed. We develop a Markov chain Monte Carlo algorithm which corrects for the bias introduced by unbalanced forests, and we present experiments using the algorithm to learn Synchronous Context-Free Grammar rules for machine translation. In this application, the forests being sampled represent the set of Hiero-style rules that are consistent with fixed input word-level alignments. We demonstrate equivalent machine translation performance to standard techniques but with much smaller grammars.