Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Taro Watanabe
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2016) 42 (1): 1–54.
Published: 01 March 2016
FIGURES
| View All (12)
Abstract
View article
PDF
In statistical machine translation (SMT), the optimization of the system parameters to maximize translation accuracy is now a fundamental part of virtually all modern systems. In this article, we survey 12 years of research on optimization for SMT, from the seminal work on discriminative models (Och and Ney 2002) and minimum error rate training (Och 2003), to the most recent advances. Starting with a brief introduction to the fundamentals of SMT systems, we follow by covering a wide variety of optimization algorithms for use in both batch and online optimization. Specifically, we discuss losses based on direct error minimization, maximum likelihood, maximum margin, risk minimization, ranking, and more, along with the appropriate methods for minimizing these losses. We also cover recent topics, including large-scale optimization, nonlinear models, domain-dependent optimization, and the effect of MT evaluation measures or search on optimization. Finally, we discuss the current state of affairs in MT optimization, and point out some unresolved problems that will likely be the target of further research in optimization for MT.