Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Tasnim Mohiuddin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2020) 46 (2): 257–288.
Published: 01 June 2020
FIGURES
| View All (4)
Abstract
View article
PDF
Crosslingual word embeddings learned from monolingual embeddings have a crucial role in many downstream tasks, ranging from machine translation to transfer learning. Adversarial training has shown impressive success in learning crosslingual embeddings and the associated word translation task without any parallel data by mapping monolingual embeddings to a shared space. However, recent work has shown superior performance for non-adversarial methods in more challenging language pairs. In this article, we investigate adversarial autoencoder for unsupervised word translation and propose two novel extensions to it that yield more stable training and improved results. Our method includes regularization terms to enforce cycle consistency and input reconstruction, and puts the target encoders as an adversary against the corresponding discriminator. We use two types of refinement procedures sequentially after obtaining the trained encoders and mappings from the adversarial training, namely, refinement with Procrustes solution and refinement with symmetric re-weighting. Extensive experimentations with high- and low-resource languages from two different data sets show that our method achieves better performance than existing adversarial and non-adversarial approaches and is also competitive with the supervised system. Along with performing comprehensive ablation studies to understand the contribution of different components of our adversarial model, we also conduct a thorough analysis of the refinement procedures to understand their effects.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2018) 44 (4): 859–894.
Published: 01 December 2018
FIGURES
| View All (8)
Abstract
View article
PDF
Participants in an asynchronous conversation (e.g., forum, e-mail) interact with each other at different times, performing certain communicative acts, called speech acts (e.g., question, request). In this article, we propose a hybrid approach to speech act recognition in asynchronous conversations. Our approach works in two main steps: a long short-term memory recurrent neural network (LSTM-RNN) first encodes each sentence separately into a task-specific distributed representation, and this is then used in a conditional random field (CRF) model to capture the conversational dependencies between sentences. The LSTM-RNN model uses pretrained word embeddings learned from a large conversational corpus and is trained to classify sentences into speech act types. The CRF model can consider arbitrary graph structures to model conversational dependencies in an asynchronous conversation. In addition, to mitigate the problem of limited annotated data in the asynchronous domains, we adapt the LSTM-RNN model to learn from synchronous conversations (e.g., meetings), using domain adversarial training of neural networks. Empirical evaluation shows the effectiveness of our approach over existing ones: (i) LSTM-RNNs provide better task-specific representations, (ii) conversational word embeddings benefit the LSTM-RNNs more than the off-the-shelf ones, (iii) adversarial training gives better domain-invariant representations, and (iv) the global CRF model improves over local models.