Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Veronika Vincze
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2022) 48 (1): 119–153.
Published: 04 April 2022
FIGURES
Abstract
View article
PDF
In this article, we seek to automatically identify Hungarian patients suffering from mild cognitive impairment (MCI) or mild Alzheimer disease (mAD) based on their speech transcripts, focusing only on linguistic features. In addition to the features examined in our earlier study, we introduce syntactic, semantic, and pragmatic features of spontaneous speech that might affect the detection of dementia. In order to ascertain the most useful features for distinguishing healthy controls, MCI patients, and mAD patients, we carry out a statistical analysis of the data and investigate the significance level of the extracted features among various speaker group pairs and for various speaking tasks. In the second part of the article, we use this rich feature set as a basis for an effective discrimination among the three speaker groups. In our machine learning experiments, we analyze the efficacy of each feature group separately. Our model that uses all the features achieves competitive scores, either with or without demographic information (3-class accuracy values: 68%–70%, 2-class accuracy values: 77.3%–80%). We also analyze how different data recording scenarios affect linguistic features and how they can be productively used when distinguishing MCI patients from healthy controls.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2012) 38 (2): 335–367.
Published: 01 June 2012
FIGURES
| View All (5)
Abstract
View article
PDF
Uncertainty is an important linguistic phenomenon that is relevant in various Natural Language Processing applications, in diverse genres from medical to community generated, newswire or scientific discourse, and domains from science to humanities. The semantic uncertainty of a proposition can be identified in most cases by using a finite dictionary (i.e., lexical cues) and the key steps of uncertainty detection in an application include the steps of locating the (genre- and domain-specific) lexical cues, disambiguating them, and linking them with the units of interest for the particular application (e.g., identified events in information extraction). In this study, we focus on the genre and domain differences of the context-dependent semantic uncertainty cue recognition task. We introduce a unified subcategorization of semantic uncertainty as different domain applications can apply different uncertainty categories. Based on this categorization, we normalized the annotation of three corpora and present results with a state-of-the-art uncertainty cue recognition model for four fine-grained categories of semantic uncertainty. Our results reveal the domain and genre dependence of the problem; nevertheless, we also show that even a distant source domain data set can contribute to the recognition and disambiguation of uncertainty cues, efficiently reducing the annotation costs needed to cover a new domain. Thus, the unified subcategorization and domain adaptation for training the models offer an efficient solution for cross-domain and cross-genre semantic uncertainty recognition.