Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Yoav Goldberg
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2017) 43 (2): 311–347.
Published: 01 June 2017
FIGURES
| View All (10)
Abstract
View article
PDF
We introduce a greedy transition-based parser that learns to represent parser states using recurrent neural networks. Our primary innovation that enables us to do this efficiently is a new control structure for sequential neural networks—the stack long short-term memory unit (LSTM). Like the conventional stack data structures used in transition-based parsers, elements can be pushed to or popped from the top of the stack in constant time, but, in addition, an LSTM maintains a continuous space embedding of the stack contents. Our model captures three facets of the parser's state: (i) unbounded look-ahead into the buffer of incoming words, (ii) the complete history of transition actions taken by the parser, and (iii) the complete contents of the stack of partially built tree fragments, including their internal structures. In addition, we compare two different word representations: (i) standard word vectors based on look-up tables and (ii) character-based models of words. Although standard word embedding models work well in all languages, the character-based models improve the handling of out-of-vocabulary words, particularly in morphologically rich languages. Finally, we discuss the use of dynamic oracles in training the parser. During training, dynamic oracles alternate between sampling parser states from the training data and from the model as it is being learned, making the model more robust to the kinds of errors that will be made at test time. Training our model with dynamic oracles yields a linear-time greedy parser with very competitive performance.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2014) 40 (2): 249–527.
Published: 01 June 2014
FIGURES
Abstract
View article
PDF
Arc-eager dependency parsers process sentences in a single left-to-right pass over the input and have linear time complexity with greedy decoding or beam search. We show how such parsers can be constrained to respect two different types of conditions on the output dependency graph: span constraints, which require certain spans to correspond to subtrees of the graph, and arc constraints, which require certain arcs to be present in the graph. The constraints are incorporated into the arc-eager transition system as a set of preconditions for each transition and preserve the linear time complexity of the parser.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2013) 39 (1): 121–160.
Published: 01 March 2013
FIGURES
| View All (7)
Abstract
View article
PDF
We present a constituency parsing system for Modern Hebrew. The system is based on the PCFG-LA parsing method of Petrov et al. 2006 , which is extended in various ways in order to accommodate the specificities of Hebrew as a morphologically rich language with a small treebank. We show that parsing performance can be enhanced by utilizing a language resource external to the treebank, specifically, a lexicon-based morphological analyzer. We present a computational model of interfacing the external lexicon and a treebank-based parser, also in the common case where the lexicon and the treebank follow different annotation schemes. We show that Hebrew word-segmentation and constituency-parsing can be performed jointly using CKY lattice parsing. Performing the tasks jointly is effective, and substantially outperforms a pipeline-based model. We suggest modeling grammatical agreement in a constituency-based parser as a filter mechanism that is orthogonal to the grammar, and present a concrete implementation of the method. Although the constituency parser does not make many agreement mistakes to begin with, the filter mechanism is effective in fixing the agreement mistakes that the parser does make. These contributions extend outside of the scope of Hebrew processing, and are of general applicability to the NLP community. Hebrew is a specific case of a morphologically rich language, and ideas presented in this work are useful also for processing other languages, including English. The lattice-based parsing methodology is useful in any case where the input is uncertain. Extending the lexical coverage of a treebank-derived parser using an external lexicon is relevant for any language with a small treebank.