As the gateway to human communication, the sense of hearing is of enormous importance in our lives. Research on hearing has recently been revolutionized by the demonstration that the ear is not simply a passive receiver for sound, but also an amplifier that augments, filters, and compresses its inputs. Hair cells, the ear's sensory receptors, use two distinct methods to implement an active process that endows our hearing with these remarkable properties. First, the vibration-sensitive structures of the ear, called hair bundles, display a mechanical instability that allows them to oscillate in response to stimulation. And second, the membranes of hair cells are replete with proteins that contract in response to electrical stimuli, thus enabling the cells to act like tiny muscles. The activity of these two motile processes can be so exuberant as to cause normal ears to emit sounds.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits copying and redistributing the material in any medium or format for noncommercial purposes only. For a full description of the license, please visit https://creativecommons.org/licenses/by-nc/4.0/legalcode.