The exption of Chinese natural language processing (NLP) has stimulated research in the broader NLP domain. However, existing large language models have limitations in comprehending and reasoning in Chinese. This paper addresses these limitations by enhancing Chinese language models comprehension and reasoning capabilities while minimizing resource requirements. We propose LLaMA-LoRA, a neural prompt engineering framework that builds upon the LLaMA-13B model and incorporates the Low-Rank Adaptation(LoRA) of Large Language Models technique for refinement. Chain-of-Thought(CoT) are crucial for generating intermediate reasoning chains in language models, but their effectiveness can be limited by isolated language patterns. Erroneous reasoning resulting from conventional prompts negatively impacts model performance. Automatic prompts are introduced to encourage reasoning chain generation and accurate answer inference. Training the model with an extensive corpus of Chinese CoT data enhances its comprehension and reasoning abilities. The LLaMA-LoRA model demonstrates exceptional performance across numerous Chinese language tasks, surpassing benchmark performance achieved by related language models such as GPT-3.5, Chat-GLM, and OpenAssistant, delivering accurate, comprehensive, and professional answers. The availability of our open-source model code facilitates further research in the field of Chinese text logical reasoning thinking chains.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.

Article PDF first page preview

Article PDF first page preview