Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Annalisa Montesanti
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 171–180.
Published: 01 January 2020
FIGURES
Abstract
View article
PDF
A growing number of research funding organizations (RFOs) are taking responsibility to increase the scientific and social impact of research output. Also reusable research data are recognized as relevant output for gaining impact. RFOs are therefore promoting FAIR research data management and stewardship (RDM) in their research funding cycle. However, the implementation of FAIR RDM still faces important obstacles and challenges. To solve these, stakeholders work together to develop innovative tools and practices. Here we elaborate on the role of RFOs in developing a FAIR funding model to support the FAIR RDM in the funding cycle, integrated with research community specific guidance, criteria and metadata, and enabling automatic assessments of progress and output from RDM. The model facilitates to create research data with a high level of FAIRness that are meaningful for a research community. To fully benefit from the model, RFOs, research institutions and service providers need to implement machine actionability in their FAIR RDM tools and procedures. As many stakeholders still need to get familiar with “human actionable” FAIR data practices, the introduction of the model will be stepwise, with an active role of the RFOs in driving FAIR RDM processes as effectively as possible.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 10–29.
Published: 01 January 2020
Abstract
View article
PDF
The FAIR principles have been widely cited, endorsed and adopted by a broad range of stakeholders since their publication in 2016. By intention, the 15 FAIR guiding principles do not dictate specific technological implementations, but provide guidance for improving Findability, Accessibility, Interoperability and Reusability of digital resources. This has likely contributed to the broad adoption of the FAIR principles, because individual stakeholder communities can implement their own FAIR solutions. However, it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations. Thus, while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways, for true interoperability we need to support convergence in implementation choices that are widely accessible and (re)-usable. We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible, robust, widespread and consistent FAIR implementations. Any self-identified stakeholder community may either choose to reuse solutions from existing implementations, or when they spot a gap, accept the challenge to create the needed solution, which, ideally, can be used again by other communities in the future. Here, we provide interpretations and implementation considerations (choices and challenges) for each FAIR principle.