Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Diego Arroyuelo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2023) 5 (3): 560–610.
Published: 01 August 2023
FIGURES
| View All (17)
Abstract
View article
PDF
ABSTRACT In this systems paper, we present MillenniumDB: a novel graph database engine that is modular, persistent, and open source. MillenniumDB is based on a graph data model, which we call domain graphs, that provides a simple abstraction upon which a variety of popular graph models can be supported, thus providing a flexible data management engine for diverse types of knowledge graph. The engine itself is founded on a combination of tried and tested techniques from relational data management, state-of-the-art algorithms for worst-case-optimal joins, as well as graph-specific algorithms for evaluating path queries. In this paper, we present the main design principles underlying MillenniumDB, describing the abstract graph model and query semantics supported, the concrete data model and query syntax implemented, as well as the storage, indexing, query planning and query evaluation techniques used. We evaluate MillenniumDB over real-world data and queries from the Wikidata knowledge graph, where we find that it outperforms other popular persistent graph database engines (including both enterprise and open source alternatives) that support similar query features.
Journal Articles
Publisher: Journals Gateway
Data Intelligence 1–39.
Published: 13 June 2023
Abstract
View article
PDF
In this systems paper, we present MillenniumDB: a novel graph database engine that is modular, persistent, and open source. MillenniumDB is based on a graph data model, which we call domain graphs, that provides a simple abstraction upon which a variety of popular graph models can be supported, thus providing a flexible data management engine for diverse types of knowledge graph. The engine itself is founded on a combination of tried and tested techniques from relational data management, state-of-the-art algorithms for worst-case-optimal joins, as well as graph-specific algorithms for evaluating path queries. In this paper, we present the main design principles underlying MillenniumDB, describing the abstract graph model and query semantics supported, the concrete data model and query syntax implemented, as well as the storage, indexing, query planning and query evaluation techniques used. We evaluate MillenniumDB over real-world data and queries from the Wikidata knowledge graph, where we find that it outperforms other popular persistent graph database engines (including both enterprise and open source alternatives) that support similar query features.