Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Erdem Yörük
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2021) 3 (2): 308–335.
Published: 02 June 2021
FIGURES
Abstract
View article
PDF
We describe a gold standard corpus of protest events that comprise various local and international English language sources from various countries. The corpus contains document-, sentence-, and token-level annotations. This corpus facilitates creating machine learning models that automatically classify news articles and extract protest event-related information, constructing knowledge bases that enable comparative social and political science studies. For each news source, the annotation starts with random samples of news articles and continues with samples drawn using active learning. Each batch of samples is annotated by two social and political scientists, adjudicated by an annotation supervisor, and improved by identifying annotation errors semi-automatically. We found that the corpus possesses the variety and quality that are necessary to develop and benchmark text classification and event extraction systems in a cross-context setting, contributing to the generalizability and robustness of automated text processing systems. This corpus and the reported results will establish a common foundation in automated protest event collection studies, which is currently lacking in the literature.