Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Jun Zhao
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2021) 3 (3): 389–401.
Published: 08 September 2021
FIGURES
Abstract
View article
PDF
This paper describes our approach for the Chinese clinical named entity recognition (CNER) task organized by the 2020 China Conference on Knowledge Graph and Semantic Computing (CCKS) competition. In this task, we need to identify the entity boundary and category labels of six entities from Chinese electronic medical record (EMR). We constructed a hybrid system composed of a semi-supervised noisy label learning model based on adversarial training and a rule post-processing module. The core idea of the hybrid system is to reduce the impact of data noise by optimizing the model results. Besides, we used post-processing rules to correct three cases of redundant labeling, missing labeling, and wrong labeling in the model prediction results. Our method proposed in this paper achieved strict criteria of 0.9156 and relax criteria of 0.9660 on the final test set, ranking first.