Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Lei Li
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (3): 599–619.
Published: 01 July 2022
FIGURES
| View All (9)
Abstract
View article
PDF
The research on graph pattern matching (GPM) has attracted a lot of attention. However, most of the research has focused on complex networks, and there are few researches on GPM in the medical field. Hence, with GPM this paper is to make a breast cancer-oriented diagnosis before the surgery. Technically, this paper has firstly made a new definition of GPM, aiming to explore the GPM in the medical field, especially in Medical Knowledge Graphs (MKGs). Then, in the specific matching process, this paper introduces fuzzy calculation, and proposes a multi-threaded bidirectional routing exploration (M-TBRE) algorithm based on depth first search and a two-way routing matching algorithm based on multi-threading. In addition, fuzzy constraints are introduced in the M-TBRE algorithm, which leads to the Fuzzy-M-TBRE algorithm. The experimental results on the two datasets show that compared with existing algorithms, our proposed algorithm is more efficient and effective.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (1): 112–133.
Published: 03 February 2022
FIGURES
| View All (10)
Abstract
View article
PDF
As from time to time it is impractical to ask agents to provide linear orders over all alternatives, for these partial rankings it is necessary to conduct preference completion. Specifically, the personalized preference of each agent over all the alternatives can be estimated with partial rankings from neighboring agents over subsets of alternatives. However, since the agents' rankings are nondeterministic, where they may provide rankings with noise, it is necessary and important to conduct the certainty-based preference completion. Hence, in this paper firstly, for alternative pairs with the obtained ranking set, a bijection has been built from the ranking space to the preference space, and the certainty and conflict of alternative pairs have been evaluated with a well-built statistical measurement Probability-Certainty Density Function on subjective probability, respectively. Then, a certainty-based voting algorithm based on certainty and conflict has been taken to conduct the certainty-based preference completion. Moreover, the properties of the proposed certainty and conflict have been studied empirically, and the proposed approach on certainty-based preference completion for partial rankings has been experimentally validated compared to state-of-arts approaches with several datasets.