Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Lihua Zhang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2023) 5 (3): 685–706.
Published: 01 August 2023
FIGURES
| View All (11)
Abstract
View article
PDF
ABSTRACT Machine reading comprehension has been a research focus in natural language processing and intelligence engineering. However, there is a lack of models and datasets for the MRC tasks in the anti-terrorism domain. Moreover, current research lacks the ability to embed accurate background knowledge and provide precise answers. To address these two problems, this paper first builds a text corpus and testbed that focuses on the anti-terrorism domain in a semi-automatic manner. Then, it proposes a knowledge-based machine reading comprehension model that fuses domain-related triples from a large-scale encyclopedic knowledge base to enhance the semantics of the text. To eliminate knowledge noise that could lead to semantic deviation, this paper uses a mixed mutual attention mechanism among questions, passages, and knowledge triples to select the most relevant triples before embedding their semantics into the sentences. Experiment results indicate that the proposed approach can achieve a 70.70% EM value and an 87.91% F1 score, with a 4.23% and 3.35% improvement over existing methods, respectively.