Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-10 of 10
Mariam Basajja
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (4): 899–916.
Published: 01 October 2022
FIGURES
| View All (7)
Abstract
View articletitled, Possibility of Enhancing Digital Health Interoperability in Uganda through FAIR Data
View
PDF
for article titled, Possibility of Enhancing Digital Health Interoperability in Uganda through FAIR Data
The digital health landscape in Uganda is plagued by problems with interoperability and sustainability, due to fragmentation and a lack of integrated digital health solutions. This can be partly attributed to the absence of policies on the interoperability of data, as well as the fact that there is no common goal to make digital data and data infrastructure interoperable across the data ecosystem. The promulgation of the FAIR Guidelines in 2016 brought together various data stewards and stakeholders to adopt a common vision on data management and enable greater interoperability. This article explores the potential of enhancing digital health interoperability through FAIR by analysing the digital solutions piloted in Uganda and their sustainability. It looks at the factors that are currently hindering interoperability by examining existing digital health solutions in Uganda, such as the Digital Health Atlas Uganda (DHA-U) and Uganda Digital Health Dashboard (UDHD). The level of FAIRness of the two dashboards was determined using the FAIR Evaluation Services tool. Analysis was also carried out to discover the level of FAIRness of the digital health solutions within the dashboards and the most frequently used software applications and data standards by the different digital health interventions in Uganda.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (4): 917–937.
Published: 01 October 2022
FIGURES
| View All (4)
Abstract
View articletitled, Proof of Concept and Horizons on Deployment of FAIR Data Points in the COVID-19 Pandemic
View
PDF
for article titled, Proof of Concept and Horizons on Deployment of FAIR Data Points in the COVID-19 Pandemic
Rapid and effective data sharing is necessary to control disease outbreaks, such as the current coronavirus pandemic. Despite the existence of data sharing agreements, data silos, lack of interoperable data infrastructures, and different institutional jurisdictions hinder data sharing and accessibility. To overcome these challenges, the Virus Outbreak Data Network (VODAN)-Africa initiative is championing an approach in which data never leaves the institution where it was generated, but, instead, algorithms can visit the data and query multiple datasets in an automated way. To make this possible, FAIR Data Points—distributed data repositories that host machine-actionable data and metadata that adhere to the FAIR Guidelines (that data should be Findable, Accessible, Interoperable and Reusable)—have been deployed in participating institutions using a dockerised bundle of tools called VODAN in a Box (ViB). ViB is a set of multiple FAIR-enabling and open-source services with a single goal: to support the gathering of World Health Organization (WHO) electronic case report forms (eCRFs) as FAIR data in a machine-actionable way, but without exposing or transferring the data outside the facility. Following the execution of a proof of concept, ViB was deployed in Uganda and Leiden University. The proof of concept generated a first query which was implemented across two continents. A SWOT (strengths, weaknesses, opportunities and threats) analysis of the architecture was carried out and established the changes needed for specifications and requirements for the future development of the solution.
Journal Articles
Abdullahi Abubakar Kawu, Joseph Elijah, Ibrahim Abdullahi, Jamilu Yahaya Maipanuku, Sakinat Folorunso ...
Publisher: Journals Gateway
Data Intelligence (2022) 4 (4): 839–851.
Published: 01 October 2022
Abstract
View articletitled, FAIR Guidelines and Data Regulatory Framework for Digital Health in Nigeria
View
PDF
for article titled, FAIR Guidelines and Data Regulatory Framework for Digital Health in Nigeria
Adopting the FAIR Guidelines—that data should be Findable, Accessible, Interoperable and Reusable (FAIR)—in the health data system in Nigeria will help protect data against use by unauthorised parties, while also making data more accessible to legitimate users. However, little is known about the FAIR Guidelines and their compatibility with data and health laws and policies in Nigeria. This study assesses the governance framework for digital and health/eHealth policies in Nigeria and explores the possibility of a policy window opening for the FAIR Guidelines to be adopted and implemented in Nigeria's eHealth sector. Ten Nigerian policy documents were examined for mention of the FAIR Guidelines (or FAIR Equivalent terminology) and the 15 sub-criteria or facets. The analysis found that although the FAIR Guidelines are not explicitly mentioned, 70% of the documents contain FAIR Equivalent terminology. The Nigeria Data Protection Regulation contained the most FAIR Equivalent principles (73%) and some of the remaining nine documents also contained some FAIR Equivalent principles (between 0–60%). Accordingly, it can be concluded that a policy window is open for the FAIR Guidelines to be adopted and implemented in Nigeria's eHealth sector.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (4): 971–990.
Published: 01 October 2022
FIGURES
| View All (9)
Abstract
View articletitled, FAIR Machine Learning Model Pipeline Implementation of COVID-19 Data
View
PDF
for article titled, FAIR Machine Learning Model Pipeline Implementation of COVID-19 Data
Research and development are gradually becoming data-driven and the implementation of the FAIR Guidelines (that data should be Findable, Accessible, Interoperable, and Reusable) for scientific data administration and stewardship has the potential to remarkably enhance the framework for the reuse of research data. In this way, FAIR is aiding digital transformation. The ‘FAIRification’ of data increases the interoperability and (re)usability of data, so that new and robust analytical tools, such as machine learning (ML) models, can access the data to deduce meaningful insights, extract actionable information, and identify hidden patterns. This article aims to build a FAIR ML model pipeline using the generic FAIRification workflow to make the whole ML analytics process FAIR. Accordingly, FAIR input data was modelled using a FAIR ML model. The output data from the FAIR ML model was also made FAIR. For this, a hybrid hierarchical k-means (HHK) clustering ML algorithm was applied to group the data into homogeneous subgroups and ascertain the underlying structure of the data using a Nigerian-based FAIR dataset that contains data on economic factors, healthcare facilities, and coronavirus occurrences in all the 36 states of Nigeria. The model showed that research data and the ML pipeline can be FAIRified, shared, and reused by following the proposed FAIRification workflow and implementing technical architecture.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (4): 698–723.
Published: 01 October 2022
FIGURES
Abstract
View articletitled, Terminology for a FAIR Framework for the Virus Outbreak Data Network-Africa
View
PDF
for article titled, Terminology for a FAIR Framework for the Virus Outbreak Data Network-Africa
The field of health data management poses unique challenges in relation to data ownership, the privacy of data subjects, and the reusability of data. The FAIR Guidelines have been developed to address these challenges. The Virus Outbreak Data Network (VODAN) architecture builds on these principles, using the European Union's General Data Protection Regulation (GDPR) framework to ensure compliance with local data regulations, while using information knowledge management concepts to further improve data provenance and interoperability. In this article we provide an overview of the terminology used in the field of FAIR data management, with a specific focus on FAIR compliant health information management, as implemented in the VODAN architecture.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (4): 771–797.
Published: 01 October 2022
FIGURES
| View All (8)
Abstract
View articletitled, FAIR Equivalency with Regulatory Framework for Digital Health in Uganda
View
PDF
for article titled, FAIR Equivalency with Regulatory Framework for Digital Health in Uganda
This study explores the possibility of opening a policy window for the adoption of the FAIR Guidelines— that data be Findable, Accessible, Interoperable, and Reusable (FAIR)—in Uganda's eHealth sector. Although the FAIR Guidelines were not mentioned in any of the policy documents relevant to Uganda's eHealth sector, the study found that 83% of the documents mentioned FAIR Equivalent efforts, such as the adoption of the National Identification Number (NIN) as a unique identifier in Uganda's national Electronic Health Management Information System (eHMIS) (findability), the planned/ongoing integration of various information systems (interoperability), and the alignment of various projects with international best practices/standards (reusability). A FAIR Equivalency Score (FE-Score), devised in this study as an aggregate score of the mention of the equivalent of FAIR facets in the policy documents, showed that the documents at the core of Uganda's digital health/eHealth policy have the highest score of all the documents analysed, indicating that there is a degree of alignment between Uganda's National eHealth Vision and the FAIR Guidelines. Therefore, it can be concluded that favourable conditions exist for the adoption and implementation of the FAIR Guidelines in Uganda's eHealth sector. Hence, it is recommended that the FAIR community adopt a capacity building strategy through organisations with a worldwide mandate, such as the World Health Organization, to promote the adoption of the FAIR Guidelines as part of international best practices.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (4): 882–898.
Published: 01 October 2022
FIGURES
| View All (4)
Abstract
View articletitled, Information Streams in Health Facilities: The Case of Uganda
View
PDF
for article titled, Information Streams in Health Facilities: The Case of Uganda
With the prevailing COVID-19 pandemic, the lack of digitally-recorded and connected health data poses a challenge for analysing the situation. Virus outbreaks, such as the current pandemic, allow for the optimisation and reuse of data, which can be beneficial in managing future outbreaks. However, there is a general lack of knowledge about the actual flow of information in health facilities, which is also the case in Uganda. In Uganda, where this case study was conducted, there is no comprehensive knowledge about what type of data is collected or how it is collected along the journey of a patient through a health facility. This study investigates information flows of clinical patient data in health facilities in Uganda. The study found that almost all health facilities in Uganda store patient information in paper files on shelves. Hospitals in Uganda are provided with paper tools, such as reporting forms, registers and manuals, in which district data is collected as aggregate data and submitted in the form of digital reports to the Ministry of Health Resource Center. These reporting forms are not digitised and, thus, not machine-actionable. Hence, it is not easy for health facilities, researchers, and others to find and access patient and research data. It is also not easy to reuse and connect this data with other digital health data worldwide, leading to the incorrect conclusion that there is less health data in Uganda. The a FAIR architecture has the potential to solve such problems and facilitate the transition from paper to digital records in the Uganda health system.
Journal Articles
Mirjam Van Reisen, Francisca Onaolapo Oladipo, Mouhamed Mpezamihigo, Ruduan Plug, Mariam Basajja ...
Publisher: Journals Gateway
Data Intelligence (2022) 4 (4): 673–697.
Published: 01 October 2022
FIGURES
| View All (9)
Abstract
View articletitled, Incomplete COVID-19 Data: The Curation of Medical Health Data by the Virus Outbreak Data Network-Africa
View
PDF
for article titled, Incomplete COVID-19 Data: The Curation of Medical Health Data by the Virus Outbreak Data Network-Africa
The incompleteness of patient health data is a threat to the management of COVID-19 in Africa and globally. This has become particularly clear with the recent emergence of new variants of concern. The Virus Outbreak Data Network (VODAN)-Africa has studied the curation of patient health data in selected African countries and identified that health information flows often do not involve the use of health data at the point of care, which renders data production largely meaningless to those producing it. This modus operandi leads to disfranchisement over the control of health data, which is extracted to be processed elsewhere. In response to this problem, VODAN-Africa studied whether or not a design that makes local ownership and repositing of data central to the data curation process, would have a greater chance of being adopted. The design team based their work on the legal requirements of the European Union's General Data Protection Regulation (GDPR); the FAIR Guidelines on curating data as Findable, Accessible (under well-defined conditions), Interoperable and Reusable (FAIR); and national regulations applying in the context where the data is produced. The study concluded that the visiting of data curated as machine actionable and reposited in the locale where the data is produced and renders services has great potential for access to a wider variety of data. A condition of such innovation is that the innovation team is intradisciplinary, involving stakeholders and experts from all of the places where the innovation is designed, and employs a methodology of co-creation and capacity-building.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 264–275.
Published: 01 January 2020
FIGURES
Abstract
View articletitled, Towards the Tipping Point for FAIR Implementation
View
PDF
for article titled, Towards the Tipping Point for FAIR Implementation
This article explores the global implementation of the FAIR Guiding Principles for scientific management and data stewardship , which provide that data should be findable, accessible, interoperable and reusable. The implementation of these principles is designed to lead to the stewardship of data as FAIR digital objects and the establishment of the Internet of FAIR Data and Services (IFDS). If implementation reaches a tipping point, IFDS has the potential to revolutionize how data is managed by making machine and human readable data discoverable for reuse. Accordingly, this article examines the expansion of the implementation of FAIR Guiding Principles, especially how and in which geographies (locations) and areas (topic domains) implementation is taking place. A literature review of academic articles published between 2016 and 2019 on the use of FAIR Guiding Principles is presented. The investigation also includes an analysis of the domains in the IFDS Implementation Networks (INs). Its uptake has been mainly in the Western hemisphere. The investigation found that implementation of FAIR Guiding Principles has taken firm hold in the domain of bio and natural sciences. To achieve a tipping point for FAIR implementation, it is now time to ensure the inclusion of non-European ascendants and of other scientific domains. Apart from equal opportunity and genuine global partnership issues, a permanent European bias poses challenges with regard to the representativeness and validity of data and could limit the potential of IFDS to reach across continental boundaries. The article concludes that, despite efforts to be inclusive, acceptance of the FAIR Guiding Principles and IFDS in different scientific communities is limited and there is a need to act now to prevent dampening of the momentum in the development and implementation of the IFDS. It is further concluded that policy entrepreneurs and the GO FAIR INs may contribute to making the FAIR Guiding Principles more flexible in including different research epistemologies, especially through its GO CHANGE pillar.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 246–256.
Published: 01 January 2020
Abstract
View articletitled, FAIR Practices in Africa
View
PDF
for article titled, FAIR Practices in Africa
This article investigates expansion of the Internet of FAIR Data and Services (IFDS) to Africa, through the three GO FAIR pillars: GO CHANGE, GO BUILD and GO TRAIN. Introduction of the IFDS in Africa has a focus on digital health. Two examples of introducing FAIR are compared: a regional initiative for digital health by governments in the East Africa Community (EAC) and an initiative by a local health provider (Solidarmed) in collaboration with Great Zimbabwe University in Zimbabwe. The obstacles to introducing FAIR are identified as underrepresentation of data from Africa in IFDS at this moment, the lack of explicit recognition of situational context of research in FAIR at present and the lack of acceptability of FAIR as a foreign and European invention which affects acceptance. It is envisaged that FAIR has an important contribution to solve fragmentation in digital health in Africa, and that any obstacles concerning African participation, context relevance and acceptance of IFDS need to be removed. This will require involvement of African researchers and ICT-developers so that it is driven by local ownership. Assessment of ecological validity in FAIR principles would ensure that the context specificity of research is reflected in the FAIR principles. This will help enhance the acceptance of the FAIR Guidelines in Africa and will help strengthen digital health research and services.