Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Michel Dumontier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 96–107.
Published: 01 January 2020
FIGURES
Abstract
View article
PDF
In recent years, as newer technologies have evolved around the healthcare ecosystem, more and more data have been generated. Advanced analytics could power the data collected from numerous sources, both from healthcare institutions, or generated by individuals themselves via apps and devices, and lead to innovations in treatment and diagnosis of diseases; improve the care given to the patient; and empower citizens to participate in the decision-making process regarding their own health and well-being. However, the sensitive nature of the health data prohibits healthcare organizations from sharing the data. The Personal Health Train (PHT) is a novel approach, aiming to establish a distributed data analytics infrastructure enabling the (re)use of distributed healthcare data, while data owners stay in control of their own data. The main principle of the PHT is that data remain in their original location, and analytical tasks visit data sources and execute the tasks. The PHT provides a distributed, flexible approach to use data in a network of participants, incorporating the FAIR principles. It facilitates the responsible use of sensitive and/or personal data by adopting international principles and regulations. This paper presents the concepts and main components of the PHT and demonstrates how it complies with FAIR principles.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 285–292.
Published: 01 January 2020
FIGURES
Abstract
View article
PDF
The FAIR principles were received with broad acceptance in several scientific communities. However, there is still some degree of uncertainty on how they should be implemented. Several self-report questionnaires have been proposed to assess the implementation of the FAIR principles. Moreover, the FAIRmetrics group released 14, general-purpose maturity for representing FAIRness. Initially, these metrics were conducted as open-answer questionnaires. Recently, these metrics have been implemented into a software that can automatically harvest metadata from metadata providers and generate a principle-specific FAIRness evaluation. With so many different approaches for FAIRness evaluations, we believe that further clarification on their limitations and advantages, as well as on their interpretation and interplay should be considered.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 10–29.
Published: 01 January 2020
Abstract
View article
PDF
The FAIR principles have been widely cited, endorsed and adopted by a broad range of stakeholders since their publication in 2016. By intention, the 15 FAIR guiding principles do not dictate specific technological implementations, but provide guidance for improving Findability, Accessibility, Interoperability and Reusability of digital resources. This has likely contributed to the broad adoption of the FAIR principles, because individual stakeholder communities can implement their own FAIR solutions. However, it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations. Thus, while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways, for true interoperability we need to support convergence in implementation choices that are widely accessible and (re)-usable. We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible, robust, widespread and consistent FAIR implementations. Any self-identified stakeholder community may either choose to reuse solutions from existing implementations, or when they spot a gap, accept the challenge to create the needed solution, which, ideally, can be used again by other communities in the future. Here, we provide interpretations and implementation considerations (choices and challenges) for each FAIR principle.