Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Mona Farouk
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2023) 5 (4): 1048–1062.
Published: 01 November 2023
FIGURES
| View All (12)
Abstract
View article
PDF
ABSTRACT Lung infiltration is a non-communicable condition where materials with higher density than air exist in the parenchyma tissue of the lungs. Lung infiltration can be hard to be detected in an X-ray scan even for a radiologist, especially at the early stages making it a leading cause of death. In response, several deep learning approaches have been evolved to address this problem. This paper proposes the Slide-Detect technique which is a Deep Neural Networks (DNN) model based on Convolutional Neural Networks (CNNs) that is trained to diagnose lung infiltration with Area Under Curve (AUC) up to 91.47%, accuracy of 93.85% and relatively low computational resources.