Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Stian Soiland-Reyes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (2): 320–341.
Published: 01 April 2022
FIGURES
Abstract
View article
PDF
A key limiting factor in organising and using information from physical specimens curated in natural science collections is making that information computable, with institutional digitization tending to focus more on imaging the specimens themselves than on efficiently capturing computable data about them. Label data are traditionally manually transcribed today with high cost and low throughput, rendering such a task constrained for many collection-holding institutions at current funding levels. We show how computer vision, optical character recognition, handwriting recognition, named entity recognition and language translation technologies can be implemented into canonical workflow component libraries with findable, accessible, interoperable, and reusable (FAIR) characteristics. These libraries are being developed in a cloud-based workflow platform—the ‘Specimen Data Refinery’ (SDR)—founded on Galaxy workflow engine, Common Workflow Language, Research Object Crates (RO-Crate) and WorkflowHub technologies. The SDR can be applied to specimens’ labels and other artefacts, offering the prospect of greatly accelerated and more accurate data capture in computable form. Two kinds of FAIR Digital Objects (FDO) are created by packaging outputs of SDR workflows and workflow components as digital objects with metadata, a persistent identifier, and a specific type definition. The first kind of FDO are computable Digital Specimen (DS) objects that can be consumed/produced by workflows, and other applications. A single DS is the input data structure submitted to a workflow that is modified by each workflow component in turn to produce a refined DS at the end. The Specimen Data Refinery provides a library of such components that can be used individually, or in series. To cofunction, each library component describes the fields it requires from the DS and the fields it will in turn populate or enrich. The second kind of FDO, RO-Crates gather and archive the diverse set of digital and real-world resources, configurations, and actions (the provenance) contributing to a unit of research work, allowing that work to be faithfully recorded and reproduced. Here we describe the Specimen Data Refinery with its motivating requirements, focusing on what is essential in the creation of canonical workflow component libraries and its conformance with the requirements of an emerging FDO Core Specification being developed by the FDO Forum.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (2): 342–357.
Published: 01 April 2022
FIGURES
Abstract
View article
PDF
We introduce the concept of Canonical Workflow Building Blocks (CWBB), a methodology of describing and wrapping computational tools, in order for them to be utilised in a reproducible manner from multiple workflow languages and execution platforms. The concept is implemented and demonstrated with the BioExcel Building Blocks library (BioBB), a collection of tool wrappers in the field of computational biomolecular simulation. Interoperability across different workflow languages is showcased through a protein Molecular Dynamics setup transversal workflow, built using this library and run with 5 different Workflow Manager Systems (WfMS). We argue such practice is a necessary requirement for FAIR Computational Workflows and an element of Canonical Workflow Frameworks for Research (CWFR) in order to improve widespread adoption and reuse of computational methods across workflow language barriers.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 108–121.
Published: 01 January 2020
FIGURES
Abstract
View article
PDF
Computational workflows describe the complex multi-step methods that are used for data collection, data preparation, analytics, predictive modelling, and simulation that lead to new data products. They can inherently contribute to the FAIR data principles: by processing data according to established metadata; by creating metadata themselves during the processing of data; and by tracking and recording data provenance. These properties aid data quality assessment and contribute to secondary data usage. Moreover, workflows are digital objects in their own right. This paper argues that FAIR principles for workflows need to address their specific nature in terms of their composition of executable software steps, their provenance, and their development.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 30–39.
Published: 01 January 2020
Abstract
View article
PDF
The FAIR principles describe characteristics intended to support access to and reuse of digital artifacts in the scientific research ecosystem. Persistent, globally unique identifiers, resolvable on the Web, and associated with a set of additional descriptive metadata, are foundational to FAIR data. Here we describe some basic principles and exemplars for their design, use and orchestration with other system elements to achieve FAIRness for digital research objects.