Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Tobias Weigel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 10–29.
Published: 01 January 2020
Abstract
View article
PDF
The FAIR principles have been widely cited, endorsed and adopted by a broad range of stakeholders since their publication in 2016. By intention, the 15 FAIR guiding principles do not dictate specific technological implementations, but provide guidance for improving Findability, Accessibility, Interoperability and Reusability of digital resources. This has likely contributed to the broad adoption of the FAIR principles, because individual stakeholder communities can implement their own FAIR solutions. However, it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations. Thus, while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways, for true interoperability we need to support convergence in implementation choices that are widely accessible and (re)-usable. We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible, robust, widespread and consistent FAIR implementations. Any self-identified stakeholder community may either choose to reuse solutions from existing implementations, or when they spot a gap, accept the challenge to create the needed solution, which, ideally, can be used again by other communities in the future. Here, we provide interpretations and implementation considerations (choices and challenges) for each FAIR principle.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2020) 2 (1-2): 40–46.
Published: 01 January 2020
Abstract
View article
PDF
Research data currently face a huge increase of data objects with an increasing variety of types (data types, formats) and variety of workflows by which objects need to be managed across their lifecycle by data infrastructures. Researchers desire to shorten the workflows from data generation to analysis and publication, and the full workflow needs to become transparent to multiple stakeholders, including research administrators and funders. This poses challenges for research infrastructures and user-oriented data services in terms of not only making data and workflows findable, accessible, interoperable and reusable, but also doing so in a way that leverages machine support for better efficiency. One primary need to be addressed is that of findability, and achieving better findability has benefits for other aspects of data and workflow management. In this article, we describe how machine capabilities can be extended to make workflows more findable, in particular by leveraging the Digital Object Architecture, common object operations and machine learning techniques.