Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Xi Lu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (1): 134–148.
Published: 03 February 2022
FIGURES
| View All (5)
Abstract
View article
PDF
Due to the large-scale spread of COVID-19, which has a significant impact on human health and social economy, developing effective antiviral drugs for COVID-19 is vital to saving human lives. Various biomedical associations, e.g., drug-virus and viral protein-host protein interactions, can be used for building biomedical knowledge graphs. Based on these sources, large-scale knowledge reasoning algorithms can be used to predict new links between antiviral drugs and viruses. To utilize the various heterogeneous biomedical associations, we proposed a fusion strategy to integrate the results of two tensor decomposition-based models (i.e., CP-N3 and ComplEx-N3). Sufficient experiments indicated that our method obtained high performance (MRR=0.2328). Compared with CP-N3, the mean reciprocal rank (MRR) is increased by 3.3% and compared with ComplEx-N3, the MRR is increased by 3.5%. Meanwhile, we explored the relationship between the performance and relationship types, which indicated that there is a negative correlation (PCC=0.446, P-value=2.26e-194) between the performance of triples predicted by our method and edge betweenness.