Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Yang Xu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2024) 6 (2): 488–503.
Published: 01 May 2024
FIGURES
Abstract
View article
PDF
ABSTRACT Low-resource text plagiarism detection faces a significant challenge due to the limited availability of labeled data for training. This task requires the development of sophisticated algorithms capable of identifying similarities and differences in texts, particularly in the realm of semantic rewriting and translation-based plagiarism detection. In this paper, we present an enhanced attentive Siamese Long Short-Term Memory (LSTM) network designed for Tibetan-Chinese plagiarism detection. Our approach begins with the introduction of translation-based data augmentation, aimed at expanding the bilingual training dataset. Subsequently, we propose a pre-detection method leveraging abstract document vectors to enhance detection efficiency. Finally, we introduce an improved attentive Siamese LSTM network tailored for Tibetan-Chinese plagiarism detection. We conduct comprehensive experiments to showcase the effectiveness of our proposed plagiarism detection framework.