Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Zhenchao Tao
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2023) 5 (3): 841–856.
Published: 01 August 2023
Abstract
View article
PDF
ABSTRACT Radiotherapy is one of the main treatment methods for cancer, and the delineation of the radiotherapy target area is the basis and premise of precise treatment. Artificial intelligence technology represented by machine learning has done a lot of research in this area, improving the accuracy and efficiency of target delineation. This article will review the applications and research of machine learning in medical image matching, normal organ delineation and treatment target delineation according to the procudures of doctors to delineate the target volume, and give an outlook on the development prospects.
Journal Articles
Publisher: Journals Gateway
Data Intelligence (2022) 4 (3): 599–619.
Published: 01 July 2022
FIGURES
| View All (9)
Abstract
View article
PDF
The research on graph pattern matching (GPM) has attracted a lot of attention. However, most of the research has focused on complex networks, and there are few researches on GPM in the medical field. Hence, with GPM this paper is to make a breast cancer-oriented diagnosis before the surgery. Technically, this paper has firstly made a new definition of GPM, aiming to explore the GPM in the medical field, especially in Medical Knowledge Graphs (MKGs). Then, in the specific matching process, this paper introduces fuzzy calculation, and proposes a multi-threaded bidirectional routing exploration (M-TBRE) algorithm based on depth first search and a two-way routing matching algorithm based on multi-threading. In addition, fuzzy constraints are introduced in the M-TBRE algorithm, which leads to the Fuzzy-M-TBRE algorithm. The experimental results on the two datasets show that compared with existing algorithms, our proposed algorithm is more efficient and effective.