Dynamic optimisation is an area of application where randomised search heuristics like evolutionary algorithms and artificial immune systems are often successful. The theoretical foundation of this important topic suffers from a lack of a generally accepted analytical framework as well as a lack of widely accepted example problems. This article tackles both problems by discussing necessary conditions for useful and practically relevant theoretical analysis as well as introducing a concrete family of dynamic example problems that draws inspiration from a well-known static example problem and exhibits a bi-stable dynamic. After the stage has been set this way, the framework is made concrete by presenting the results of thorough theoretical and statistical analysis for mutation-based evolutionary algorithms and artificial immune systems.

You do not currently have access to this content.