Automated algorithm selection and configuration are key enabling approaches for improving the state of the art in solving a broad range of important problems, by exploiting performance complementarity between multiple algorithms for the same problem (selection) and by realising the latent performance potential in parameterised algorithms (configuration). Compared to traditional, manual approaches, these techniques are not only more efficient and rely less on human expertise, but also provide a more principled basis for algorithm selection and configuration, enable fairer comparisons between algorithms, and facilitate new insights into which algorithmic techniques and components work best and under which circumstances.

Work on automated algorithm selection, configuration, and related areas spans multiple, weakly connected communities, including artificial intelligence, evolutionary computation, mathematical optimisation and operations research. This special issue follows a Dagstuhl seminar on the same topic, held in October 2016, and is intended as a further step toward creating synergy between those communities....

You do not currently have access to this content.