Evolutionary multiobjective optimization for the classical vertex cover problem has been analysed in Kratsch and Neumann (2013) in the context of parameterized complexity analysis. This article extends the analysis to the weighted vertex cover problem in which integer weights are assigned to the vertices and the goal is to find a vertex cover of minimum weight. Using an alternative mutation operator introduced in Kratsch and Neumann (2013), we provide a fixed parameter evolutionary algorithm with respect to OPT, the cost of an optimal solution for the problem. Moreover, we present a multiobjective evolutionary algorithm with standard mutation operator that keeps the population size in a polynomial order by means of a proper diversity mechanism, and therefore, manages to find a 2-approximation in expected polynomial time. We also introduce a population-based evolutionary algorithm which finds a (1+ɛ)-approximation in expected time O(n·2min{n,2(1-ɛ)OPT}+n3).

You do not currently have access to this content.