It is supposed that the finite search space Ω has certain symmetries that can be described in terms of a group of permutations acting upon it. If crossover and mutation respect these symmetries, then these operators can be described in terms of a mixing matrix and a group of permutation matrices. Conditions under which certain subsets of Ω are invariant under crossover are investigated, leading to a generalization of the term schema. Finally, it is sometimes possible for the group acting on Ω to induce a group structure on Ω itself.

This content is only available as a PDF.