The main aim of randomized search heuristics is to produce good approximations of optimal solutions within a small amount of time. In contrast to numerous experimental results, there are only a few theoretical explorations on this subject. We consider the approximation ability of randomized search heuristics for the class of covering problems and compare single-objective and multi-objective models for such problems. For the VertexCover problem, we point out situations where the multi-objective model leads to a fast construction of optimal solutions while in the single-objective case, no good approximation can be achieved within the expected polynomial time. Examining the more general SetCover problem, we show that optimal solutions can be approximated within a logarithmic factor of the size of the ground set, using the multi-objective approach, while the approximation quality obtainable by the single-objective approach in expected polynomial time may be arbitrarily bad.


A preliminary version of this article appeared in Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007), Vol. 1, pp. 797–804, ACM Press, New York, 2007.

This content is only available as a PDF.