Four lines below Equation (7), page 682, it must correctly read:
Q=12Hf(x)=12Tf(x)
In Equation (27), page 685, the logarithms are missing, it must correctly read:
Iij(θ)=lnp(x|θ)θilnp(x|θ)θjp(x|θ)dNx=-2lnp(x|θ)θiθjp(x|θ)dNx
(27)
On page 687, below Equation (36), the derivations leading to Equation (40) must be corrected1 (the final result in Equation (41) does not change by this correction):
Treating the C-related part in (35) using CabCcd=12δacδbd+δadδbc (here, symmetry of C must be taken into account) yields
I(α1α2),(β1β2)=12k,l,m,nCkl-1ClmCα1α2Cmn-1CnkCβ1β2=18k,l,m,nCkl-1(δlα1δmα2+δlα2δmα1)Cmn-1(δnβ1δkβ2+δnβ2δkβ1).
(37)
Thus, one gets for the C-related part of θ (taking the symmetry of C-1 into account)
C:I(α1α2),(β1β2)=14Cα1β1-1Cα2β2-1+Cα1β2-1Cα2β1-1.
(38)

The non-numbered equation below Equation (40), page 687, must be adopted accordingly:

The correctness of
C:I(α1α2),(β1β2)-1=2Cα1β2Cβ1α2
(40)
is proven directly by checking
β1,β2I(α1α2),(β1β2)-1I(β1β2),(γ1γ2)=12δα1γ2δα2γ1+δα1γ1δα2γ2.
On page 694, the derivation of Equation (83) must be corrected (again without consequences for the result in Equation (84)):
σfCmn=121σfCmni,j,k,l(ai-2x¯kQki)Cij(aj-2x¯lQlj)+2QijCjkQklCli=121σfi,j,k,l(ai-2x¯kQki)12(δimδjn+δinδjm)(aj-2x¯lQlj)12+Qij(δjmδkn+δjnδkm)QklCli+QijCjkQkl(δlmδin+δlnδim)=121σfk,l(am-2x¯kQkm)(an-2x¯lQln)+4QmkCklQln
(83)
1

The author is grateful to Zhenhua Li for pointing out this mistake to be corrected here.