Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Arnaud Liefooghe
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2017) 25 (4): 555–585.
Published: 01 December 2017
FIGURES
| View All (11)
Abstract
View article
PDF
In this article, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box multiobjective combinatorial optimization problems. At first, we measure the performance of two conventional dominance-based approaches with unbounded archive on a benchmark of enumerable binary optimization problems with tunable ruggedness, objective space dimension, and objective correlation ( MNK-landscapes). Precisely, we investigate the expected runtime required by a global evolutionary optimization algorithm with an ergodic variation operator (GSEMO) and by a neighborhood-based local search heuristic (PLS), to identify a ( approximation of the Pareto set. Then, we define a number of problem features characterizing the fitness landscape, and we study their intercorrelation and their association with algorithm runtime on the benchmark instances. At last, with a mixed-effects multilinear regression we assess the individual and joint effect of problem features on the performance of both algorithms, within and across the instance classes defined by benchmark parameters. Our analysis reveals further insights into the importance of ruggedness and multimodality to characterize instance hardness for this family of multiobjective optimization problems and algorithms.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2013) 21 (1): 179–196.
Published: 01 March 2013
FIGURES
| View All (4)
Abstract
View article
PDF
In this article, a local search approach is proposed for three variants of the bi-objective binary knapsack problem, with the aim of maximizing the total profit and minimizing the total weight. First, an experimental study on a given structural property of connectedness of the efficient set is conducted. Based on this property, a local search algorithm is proposed and its performance is compared to exact algorithms in terms of runtime and quality metrics. The experimental results indicate that this simple local search algorithm is able to find a representative set of optimal solutions in most of the cases, and in much less time than exact algorithms.