Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Brian W. Goldman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2016) 24 (3): 491–519.
Published: 01 September 2016
FIGURES
| View All (10)
Abstract
View article
PDF
This article investigates Gray Box Optimization for pseudo-Boolean optimization problems composed of M subfunctions, where each subfunction accepts at most k variables. We will refer to these as Mk Landscapes. In Gray Box Optimization, the optimizer is given access to the set of M subfunctions. We prove Gray Box Optimization can efficiently compute hyperplane averages to solve non-deceptive problems in time. Bounded separable problems are also solved in time. As a result, Gray Box Optimization is able to solve many commonly used problems from the evolutional computation literature in evaluations. We also introduce a more general class of Mk Landscapes that can be solved using dynamic programming and discuss properties of these functions. For certain type of problems Gray Box Optimization makes it possible to enumerate all local optima faster than brute force methods. We also provide evidence that randomly generated test problems are far less structured than those found in real-world problems.