Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Changhe Li
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2023) 31 (1): 53–71.
Published: 01 March 2023
Abstract
View article
PDF
Model management is an essential component in data-driven surrogate-assisted evolutionary optimization. In model management, the solutions with a large degree of uncertainty in approximation play an important role. They can strengthen the exploration ability of algorithms and improve the accuracy of surrogates. However, there is no theoretical method to measure the uncertainty of prediction of Non-Gaussian process surrogates. To address this issue, this article proposes a method to measure the uncertainty. In this method, a stationary random field with a known zero mean is used to measure the uncertainty of prediction of Non-Gaussian process surrogates. Based on experimental analyses, this method is able to measure the uncertainty of prediction of Non-Gaussian process surrogates. The method's effectiveness is demonstrated on a set of benchmark problems in single surrogate and ensemble surrogates cases.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2014) 22 (4): 559–594.
Published: 01 December 2014
FIGURES
| View All (8)
Abstract
View article
PDF
The multipopulation method has been widely used to solve dynamic optimization problems (DOPs) with the aim of maintaining multiple populations on different peaks to locate and track multiple changing optima simultaneously. However, to make this approach effective for solving DOPs, two challenging issues need to be addressed. They are how to adapt the number of populations to changes and how to adaptively maintain the population diversity in a situation where changes are complicated or hard to detect or predict. Tracking the changing global optimum in dynamic environments is difficult because we cannot know when and where changes occur and what the characteristics of changes would be. Therefore, it is necessary to take these challenging issues into account in designing such adaptive algorithms. To address the issues when multipopulation methods are applied for solving DOPs, this paper proposes an adaptive multi-swarm algorithm, where the populations are enabled to be adaptive in dynamic environments without change detection. An experimental study is conducted based on the moving peaks problem to investigate the behavior of the proposed method. The performance of the proposed algorithm is also compared with a set of algorithms that are based on multipopulation methods from different research areas in the literature of evolutionary computation.