Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Dan Simon
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2016) 24 (3): 427–458.
Published: 01 September 2016
FIGURES
| View All (21)
Abstract
View article
PDF
Biogeography-based optimization (BBO) is an evolutionary algorithm inspired by biogeography, which is the study of the migration of species between habitats. This paper derives a mathematical description of the dynamics of BBO based on ideas from statistical mechanics. Rather than trying to exactly predict the evolution of the population, statistical mechanics methods describe the evolution of statistical properties of the population fitness. This paper uses the one-max problem, which has only one optimum and whose fitness function is the number of 1s in a binary string, to derive equations that predict the statistical properties of BBO each generation in terms of those of the previous generation. These equations reveal the effect of migration and mutation on the population fitness dynamics of BBO. The results obtained in this paper are similar to those for the simple genetic algorithm with selection and mutation. The paper also derives equations for the population fitness dynamics of general separable functions, and we find that the results obtained for separable functions are the same as those for the one-max problem. The statistical mechanics theory of BBO is shown to be in good agreement with simulation.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2011) 19 (2): 167–188.
Published: 01 June 2011
Abstract
View article
PDF
Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases.